The discrete compactness property for anisotropic edge elements on polyhedral domains

We prove the discrete compactness property of the edge elements of any order on a class of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519—549]. They are appropriately grad...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lombardi, A.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04855caa a22005417a 4500
001 PAPER-13006
003 AR-BaUEN
005 20230518204314.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84996129286 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Lombardi, A.L. 
245 1 4 |a The discrete compactness property for anisotropic edge elements on polyhedral domains 
260 |c 2013 
506 |2 openaire  |e Política editorial 
504 |a Apel, T., Nicaise, S., The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges (1998) Math. Meth. Appl. Sci., 21, pp. 519-549 
504 |a Boffi, D., Fortin operator and discrete compactness for edge elements (2000) Numer. Math., 87, pp. 229-246 
504 |a Boffi, D., Finite element approximation of eigenvalue problems (2010) Acta Numer, 19, pp. 1-120 
504 |a Buffa, A., Costabel, M., Dauge, M., Algebraic convergence for anisotropic edge elements in polyhedral domains (2005) Numer. Math., 101, pp. 29-65 
504 |a Caorsi, S., Fernandes, P., Raffetto, M., On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems (2000) SIAM J. Numer. Anal., 38, pp. 580-607 
504 |a Caorsi, S., Fernandes, P., Raffetto, M., Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec-type elements (2001) Math. Model. Numer. Anal., 35, pp. 331-354 
504 |a Girault, V., Raviart, P.A., Finite Element Methods for Navier-Stokes Equations (1986) Theory and Applications., , SpringerVerlag, Berlin 
504 |a Hiptmair, R., Finite elements in computational electromagnetism (2002) Acta Numer, 11, pp. 237-339 
504 |a Kikuchi, F., On a discrete compactness property for the Nedelec finite elements (1989) J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36, pp. 479-490 
504 |a Krizek, M., On the maximum angle condition for linear tetrahedral elements (1992) SIAM J. Numer. Anal., 29, pp. 513-520 
504 |a Leis, R., (1986) Initial Boundary Value Problems in Mathematical Physics, , John Wiley, New York 
504 |a Lombardi, A.L., Interpolation error estimates for edge elements on anisotropic meshes (2011) IMA J. Numer. Anal, 31, pp. 1683-1712 
504 |a Monk, P., (2003) Finite Element Methods for Maxwell’s Equations, , Oxford University Press, New York 
504 |a Monk, P., Demkowicz, L., Discrete compactness and the approximation of Maxwell’s equations in R3 (2001) Math. Comp., 70, pp. 507-523 
504 |a Nedelec, J.C., Mixed finite elements in R3 (1980) Numer. Math., 35, pp. 315-341 
504 |a Nicaise, S., Edge elements on anisotropic meshes and approximation of the Maxwell equations (2001) SIAM J. Numer. Anal., 39, pp. 784-816 
504 |a Raviart, P.A., Thomas, J.-M., A mixed finite element method for second order elliptic problems (1977) Mathematical Aspects of the Finite Element Method, , edited by I. Galligani and E. Magenes 
504 |a Weber, C.H., A local compactness theorem for Maxwell’s equations (1980) Math. Meth. Appl. Sci., 2, pp. 12-25 
520 3 |a We prove the discrete compactness property of the edge elements of any order on a class of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519—549]. They are appropriately graded near singular corners and edges of the polyhedron. © EDP Sciences, SMAI 2013.  |l eng 
593 |a Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutierrez 1150, Provincia de Buenos Airesn, Los Polvorines, B1613 GSX, Argentina 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Member of CONICET, Argentina 
690 1 0 |a ANISOTROPIC FINITE ELEMENTS 
690 1 0 |a DISCRETE COMPACTNESS PROPERTY 
690 1 0 |a EDGE ELEMENTS 
690 1 0 |a MAXWELL EQUATIONS 
773 0 |d 2013  |g v. 47  |h pp. 169-181  |k n. 1  |p Math. Model. Numer. Anal.  |x 0764583X  |w (AR-BaUEN)CENRE-1603  |t Mathematical Modelling and Numerical Analysis 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84996129286&doi=10.1051%2fm2an%2f2012024&partnerID=40&md5=76ab284fa415b5a9fe0fbcdfa822f41c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1051/m2an/2012024  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0764583X_v47_n1_p169_Lombardi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0764583X_v47_n1_p169_Lombardi  |y Registro en la Biblioteca Digital 
961 |a paper_0764583X_v47_n1_p169_Lombardi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 73959