Form invariance symmetry generates a large set of FRW cosmologies

We show that Einstein's field equations for spatially flat Friedmann-Robertson-Walker (FRW) spacetimes have a form invariance symmetry (FIS) realized by the form invariance transformations (FIT) which are indeed generated by an invertible function of the source energy density. These transformat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Chimento, L.P
Otros Autores: Richarte, M.G, Sánchez, I.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:We show that Einstein's field equations for spatially flat Friedmann-Robertson-Walker (FRW) spacetimes have a form invariance symmetry (FIS) realized by the form invariance transformations (FIT) which are indeed generated by an invertible function of the source energy density. These transformations act on the Hubble expansion rate, the energy density and pressure of the cosmic fluid; likewise such transformations are endowed with a Lie group structure. Each representation of this group is associated with a particular fluid and consequently a determined cosmology, so that, the FIS defines a set of equivalent cosmological models. We focus our seek in the FIT generated by a linear function because it provides a natural framework to express the duality and also produces large sets of cosmologies, starting from a seed one, in several contexts as for instance in the cases of a perfect fluid source and a scalar field driven by a potential depending linearly on the scalar field kinetic energy density. © 2013 World Scientific Publishing Company.
Bibliografía:Gieres, F., (1998) Symmetries in Physics, , eds. F. Gieres M. Kibler C. Lucchesi and O. Piguet Editions Frontieres
Green, M.B., Schwartz, J.H., Witten, E., (1987) Superstring Theory, , Cambridge Univ. Press
Polchinski, J., (1998) String Theory I-II, , Cambridge Univ. Press
Veneziano, G., (1991) Phys. Lett. B, 265, p. 287
Tseytlin, A.A., (1991) Mod. Phys. Lett. A, 6, p. 1721
Chimento, L.P., (2002) Phys. Rev. D, 65, p. 063517
Chimento, L.P., (2004) Phys. Lett. B, 633, p. 9
Chimento, L.P., Lazkoz, R., (2003) Phys. Rev. Lett, 91, p. 211301
Nojiri, S., Odintsov, S.D., Tsujikawa, S., (2005) Phys. Rev. D, 71, p. 063004
Nojiri, S., Odintsov, S.D., (2005) Phys. Rev. D, 72, p. 023003
Andrianov, A.A., Cannata, F., Kamenshchik, A.Y., (2005) Phys. Rev. D, 72, p. 043531
S. Capozziello, E. Piedipalumbo, C. Rubano and P. Scudellaro, arXiv:0908.2362v2; Calcagni, G., (2005) Phys. Rev. D, 71, p. 023511
Astashenok, A.V., Nojiri, S., Odintsov, S.D., Yurov, A.V., ArXiv: 1201.4056
Dabrowski, M.P., Stachowiak, T., Szydlowski, M., (2003) Phys. Rev. D, 68, p. 103519
Gasperini, M., Veneziano, G., (2003) Phys. Rep, 373, p. 1
Aguirregabiria, J.M., Chimento, L.P., Lazkoz, R., (2004) Phys. Rev. D, 70, p. 023509
Chimento, L.P., Lazkoz, R., (2005) Int. J Mod Phys D, 14, p. 587
Cai, Y.-F., Li, H., Piao, Y.-S., Zhang, X., (2007) Phys. Lett. B, 646, p. 141
Chimento, L.P., Forte, M., Lazkoz, R., Richarte, M.G., (2009) Phys. Rev. D, 79, p. 043502
Faraoni, V., (2011) Phys. Lett. B, 703, p. 228
Cataldo, M., Chimento, L.P., (2008) Int. J. Mod. Phys D, 17, p. 1981
Chimento, L.P., Pav'On, D., (2006) Phys. Rev. D, 73, p. 063511
Aguirregabiria, J.M., Chimento, L.P., Jakubi, A.S., Lazkoz, R., (2003) Phys. Rev. D, 67, p. 083518
Chimento, L.P., Lazkoz, R., Richarte, M.G., (2011) Phys. Rev. D, 83, p. 063505
Lazkoz, R., (2004) Phys. Rev. D, 70, p. 064033
Parsons, P., Barrow, J.D., (1995) Class. Quantum Grav, 12, p. 1715
Charters, T., Mimoso, J.P., (2010) J. Cosmol. Astropart. Phys, 1008 (22)
Chimento, L.P., (2004) Phys. Rev. D, 69, p. 123517
Chimento, L.P., Devecchi, F.P., Forte, M., Kremer, G.M., (2008) Class. Quantum Grav, 25, p. 085007
Chimento, L.P., Lazkoz, R., (2008) Gen. Relat. Gravit, 40, p. 2543
Chimento, L.P., Zimdahl, W., (2008) Int. J Mod Phys D, 17, p. 2229
Pucheu, M.L., Bellini, M., (2010) Nuovo Cimento B, 125, p. 851
Stephani, H., MacCallum, M.A.H., (1990) Differential Equations: Their Solutions Using Symmetry, p. 273. , Cambridge Univ. Press
Chimento, L.P., (1997) J. Math. Phys, 38, p. 2565
Biswas, T., Gerwick, E., Koivisto, T., Mazumdar, A., (2012) Phys. Rev. Lett, 108, p. 031101
ISSN:02177323
DOI:10.1142/S0217732312502367