Electronic spectra of the protonated indole chromophore in the gas phase

The electronic spectroscopy of cold protonated indole was investigated experimentally and theoretically. Two isomers were observed by experiment: The first isomer corresponds to the lowest-energy isomer in the calculations, absorbing at ∼350 nm and protonated on the C3 atom of the pyrrole ring. Acco...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Alata, I.
Otros Autores: Bert, J., Broquier, M., Dedonder, C., Feraud, G., Grégoire, G., Soorkia, S., Marceca, E., Jouvet, C.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14644caa a22013937a 4500
001 PAPER-11546
003 AR-BaUEN
005 20230518204142.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84878347996 
024 7 |2 cas  |a proton, 12408-02-5, 12586-59-3; Gases; Indoles; Protons 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JPCAF 
100 1 |a Alata, I. 
245 1 0 |a Electronic spectra of the protonated indole chromophore in the gas phase 
260 |c 2013 
270 1 0 |m Jouvet, C.; CLUPS (Centre Laser de l'Université Paris-Sud/LUMAT FR 2764), Université Paris-Sud, 91405 Orsay Cedex, France; email: christophe.jouvet@univ-amu.fr 
506 |2 openaire  |e Política editorial 
504 |a Lumry, R., Hershberger, M., Status of Indole Photochemistry with Special Reference Tobiological Applications (1978) Photochem. Photobiol., 27 (6), pp. 819-840 
504 |a Lakowicz, J.R., (1999) Principles of Fluorescence Spectroscopy, , 2 nd ed. Kluwer Academic Publishers/Plenum Press: New York 
504 |a Vivian, J.T., Callis, P.R., Mechanisms of Tryptophan Fluorescence Shifts in Proteins (2001) Biophys. J., 80 (5), pp. 2093-2109 
504 |a Callis, P.R., Liu, T., Quantitative Prediction of Fluorescence Quantum Yields for Tryptophan in Proteins (2004) J. Phys. Chem. B, 108 (14), pp. 4248-4259 
504 |a Papp, S., Vanderkooi, J.M., Tryptophan Phosphorescence at Room Temperature As a Tool to Study Protein Structure and Dynamics (1989) Photochem. Photobiol., 49 (6), pp. 775-784 
504 |a Creed, D., The Photophysics and Photochemistry of the near-UV Absorbing Amino Acids - I. Tryptophan and Its Simple Derivatives (1984) Photochem. Photobiol., 39 (4), pp. 537-562 
504 |a Bent, D.V., Hayon, E., Excited State Chemistry of Aromatic Amino Acids and Related Peptides. 111. Tryptophan (1975) J. Am. Chem. Soc., 97 (10), pp. 2612-2619 
504 |a Robbins, R.J., Fleming, G.R., Beddard, G.S., Robinson, G.W., Thistlethwaite, P.J., Woolfe, G.J., Photophysics of Aqueous Tryptophan: PH and Temperature Effects (1980) J. Am. Chem. Soc., 102 (20), pp. 6271-6279 
504 |a Szabo, A.G., Rayner, D.M., Fluorescence Decay of Tryptophan Conformers in Aqueous Solution (1980) J. Am. Chem. Soc., 102, pp. 554-563 
504 |a Petrich, J.W., Chang, M.C., McDonald, D.B., Fleming, G.R., On the Origin of Nonexponential Fluorescence Decay in Tryptophan and Its Derivatives (1983) J. Am. Chem. Soc., 105, pp. 3824-3832 
504 |a Saito, I., Sugiyama, H., Yamamoto, A., Muramatsu, S., Matsuura, T., Photoinduced Reactions. 158. Photochemical Hydrogen-Deuterium Exchange Reaction of Tryptophan. The Role of Nonradiative Decay of Singlet Tryptophan (1984) J. Am. Chem. Soc., 106 (15), pp. 4286-4287 
504 |a Chen, Y., Liu, B., Barkley, M.D., Trifluoroethanol Quenches Indole Fluorescence by Excited-State Proton Transfer (1995) J. Am. Chem. Soc., 117, pp. 5608-5609 
504 |a Yu, H.-T., Colucci, W.J., McLaughlin, M.L., Barkley, M.D., Fluorescence Quenching in Indoles by Excited-State Proton Transfer (1992) J. Am. Chem. Soc., 114, pp. 8449-8454 
504 |a Rizzo, T.R., Park, Y.D., Peteanu, L.A., Levy, D.H., The Electronic Spectrum of the Amino Acid Tryptophan in the Gas Phase (1986) J. Chem. Phys., 84 (5), pp. 2534-2541 
504 |a Philips, L.A., Webb, S.P., Martinez III, S.J.., Fleming, G.R., Levy, D.H., Time-Resolved Spectroscopy of Tryptophan Conformers in a Supersonic Jet (1988) J. Am. Chem. Soc., 110, pp. 1352-1355 
504 |a Boyarkin, O.V., Mercier, S.R., Kamariotis, A., Rizzo, T.R., Electronic Spectroscopy of Cold, Protonated Tryptophan and Tyrosine (2006) J. Am. Chem. Soc., 128, pp. 2816-2817 
504 |a Kang, H., Dedonder-Lardeux, C., Jouvet, C., Gregoire, G., Desfrancois, C., Schermann, J.P., Barat, M., Fayeton, J.A., Control of Bond-Cleaving Reactions of Free Protonated Tryptophan Ion by Femtosecond Laser Pulses (2005) J. Phys. Chem. A, 109 (11), pp. 2417-2420 
504 |a Kang, H., Jouvet, C., Dedonder-Lardeux, C., Martrenchard, S., Gregoire, G., Desfrancois, C., Schermann, J.P., Fayeton, J.A., Ultrafast Deactivation Mechanisms of Protonated Aromatic Amino Acids Following UV Excitation (2005) Phys. Chem. Chem. Phys., 7 (2), pp. 394-398 
504 |a Rizzo, T.R., Stearns, J.A., Boyarkin, O.V., Spectroscopic Studies of Cold, Gas-Phase Biomolecular Ions (2009) Int. Rev. Phys. Chem., 28 (3), pp. 481-515 
504 |a Lepere, V., Lucas, B., Barat, M., Fayeton, J., Picard, V., Jouvet, C., Carcabal, P., Fujii, A., Comprehensive Characterization of the Photodissociation Pathways of Protonated Tryptophan (2007) J. Chem. Phys., 127 (13), p. 134313 
504 |a Lucas, B., Barat, M., Fayeton, J., Perot, M., Jouvet, C., Gregoire, G., Nielsen, S., Mechanisms of photoinduced Cα-Cβ bond breakage in protonated aromatic amino acids (2008) J. Chem. Phys., 128 (16), p. 164302 
504 |a Blancafort, L., Gonzalez, D., Olivucci, M., Robb, M.A., Quenching of Tryptophan 1(π,π*) Fluorescence Induced by Intramolecular Hydrogen Abstraction via an Aborted Decarboxylation Mechanism (2002) J. Am. Chem. Soc., 124, pp. 6398-6406 
504 |a Gregoire, G., Jouvet, C., Dedonder, C., Sobolewski, A.L., Ab Initio Study of the Excited-State Deactivation Pathways of Protonated Tryptophan and Tyrosine (2007) J. Am. Chem. Soc., 129, pp. 6223-6231 
504 |a Sharma, D., Léonard, J., Haacke, S., Ultrafast Excited-State Dynamics of Tryptophan in Water Observed by Transient Absorption Spectroscopy (2010) Chem. Phys. Lett., 489, pp. 99-102 
504 |a Wang, X.-B., Wang, L.-S., Development of a Low-Temperature Photoelectron Spectroscopy Instrument Using an Electrospray Ion Source and a Cryogenically Controlled Ion Trap (2008) Rev. Sci. Instrum., 79 (7), p. 073108 
504 |a Choi, C.M., Choi, D.H., Kim, N.J., Heo, J., Effective Temperature of Protonated Tyrosine Ions in a Cold Quadrupole Ion Trap (2012) Int. J. Mass Spectrom., 314, pp. 18-21 
504 |a Kamrath, M.Z., Garand, E., Jordan, P., Leavitt, C.M., Wolk, A.B., Van Stipdonk, M.J., Miller, S.J., Johnson, M.A., Vibrational Characterization of Simple Peptides Using Cryogenic Infrared Photodissociation of H2-Tagged, Mass-Selected Ions (2011) J. Am. Chem. Soc., 133 (16), pp. 6440-6448 
504 |a Andersen, J.U., Hvelplund, P., Nielsen, S.B., Tomita, S., Wahlgreen, H., Møller, S.P., Pedersen, U.V., Jørgensen, T.J.D., The Combination of an Electrospray Ion Source and an Electrostatic Storage Ring for Lifetime and Spectroscopy Experiments on Biomolecules (2002) Rev. Sci. Instrum., 73 (3), pp. 1284-1287 
504 |a Ahlrichs, R., Bar, M., Haser, M., Horn, H., Kolmel, C., Electronic-Structure Calculations on Workstation Computers: The Program System TURBOMOLE (1989) Chem. Phys. Lett., 162, pp. 165-169 
504 |a Weigend, F., Haser, M., RI-MP2: First Derivatives and Global Consistency (1997) Theor. Chem. Acc., 97, pp. 331-340 
504 |a Dunning, T.H., Gaussian Basis Sets for Use in Correlated Molecular Calculations. 1. The Atoms Boron through Neon and Hydrogen (1989) J. Chem. Phys., 90 (2), pp. 1007-1023 
504 |a Western, C.M., PGOPHER, A Program for Simulating Rotational Structure, , http://pgopher.chm.bris.ac.uk, University of Bristol: Bristol, U.K. 2010; available at accessed June 2010 
504 |a Yang, Z.B., Ruan, C., Ahmed, H., Rodgers, M.T., Probing the Potential Energy Landscape for Dissociation of Protonated Indole via Threshold Collision-Induced Dissociation and Theoretical Studies (2007) Int. J. Mass Spectrom., 265 (23), pp. 388-400 
504 |a Sindona, G., Uccella, N., Stahl, D., Reaction Mechanisms of Gaseous Organic Ions. Part 22. Structure and Reactivity of Protonated Indole in the Gas Phase by MS/MS (1985) Int. J. Mass Spectrom. Ion Process, 63, pp. 49-58 
504 |a Corval, M., An Electron Impact Study of HCN Elimination from Indole by Use of 13C Labelling (1981) Org. Mass Spectrom., 16 (10), pp. 444-447 
504 |a Somers, K.R.F., Kryachko, E.S., Ceulemans, A., Theoretical Study of Indole: Protonation, Indolyl Radical, Tautomers of Indole, and Its Interaction with Water (2004) Chem. Phys., 301, pp. 61-79 
504 |a Otero, N., Gonzalez Moa, M.J., Mandado, M., Mosquera, R.A., QTAIM Study of the Protonation of Indole (2006) Chem. Phys. Lett., 428, pp. 249-254 
504 |a Hunter, E.P., Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update (1998) J. Phys. Chem. Ref. Data, 27 (3), pp. 413-656 
504 |a Arnold, S., Sulkes, M., Fluorescence Lifetimes of Jet-Cooled Carbonyl-Substituted Indoles. Evidence of Intramolecular Charge Transfer Quenching (1992) Chem. Phys. Lett., 200 (12), pp. 125-129 
504 |a Hager, J.W., Demmer, D.R., Wallace, S.C., Electronic Spectra of Jet-Cooled Indoles: Evidence for the 1La State (1987) J. Phys. Chem., 91 (6), pp. 1375-1382 
504 |a Alata, I., Omidyan, R., Broquier, M., Dedonder, C., Dopfer, O., Jouvet, C., Effect of Protonation on the Electronic Structure of Aromatic Molecules: NaphthaleneH+ (2010) Phys. Chem. Chem. Phys., 12 (43), pp. 14456-14458 
504 |a Alata, I., Omidyan, R., Dedonder, C., Broquier, M., Jouvet, C., Electronically Excited States of Protonated Aromatic Molecules: Benzaldehyde (2009) Phys. Chem. Chem. Phys., 11 (48), pp. 11479-11486 
504 |a Pino, G.A., Oldani, A.N., Marceca, E., Fujii, M., Ishiuchi, S.-I., Miyazaki, M., Broquier, M., Jouvet, C., Excited State Hydrogen Transfer Dynamics in Substituted Phenols and Their Complexes with Ammonia: ππ*-πσ* Energy Gap Propensity and ortho -Substitution Effect (2010) J. Chem. Phys., 133, p. 124313 
504 |a Sakota, K., Jouvet, C., Dedonder, C., Fujii, M., Sekiya, H., Excited-State Triple-Proton Transfer in 7-Azaindole(H2O) 2 and Reaction Path Studied by Electronic Spectroscopy in the Gas Phase and Quantum Chemical Calculations (2010) J. Phys. Chem. A, 114, pp. 11161-11166 
504 |a Send, R., Kuehn, M., Furche, F., Assessing Excited State Methods by Adiabatic Excitation Energies (2011) J. Chem. Theory Comput., 7 (8), pp. 2376-2386 
504 |a Wilson Jr., E.B., The Normal Modes and Frequencies of Vibration of the Regular Plane Hexagon Model of the Benzene Molecule (1934) Phys. Rev., 45, pp. 706-714 
504 |a Alata, I., Broquier, M., Dedonder, C., Jouvet, C., Marceca, E., Electronic Excited States of Protonated Aromatic Molecules: Protonated Fluorene (2012) Chem. Phys., 393 (1), pp. 25-31 
504 |a Dedonder-Lardeux, C., Grosswasser, D., Jouvet, C., Martrenchard, S., Dissociative Hydrogen Transfer in Indole-(NH3) n Clusters (2001) PhysChemComm., 4, pp. 21-23 
504 |a Sobolewski, A.L., Domcke, W., Dedonder-Lardeux, C., Jouvet, C., Excited-State Hydrogen Detachment and Hydrogen Transfer Driven by Repulsive 1πσ* States: A New Paradigm for Nonradiative Decay in Aromatic Biomolecules (2002) Phys. Chem. Chem. Phys., 4, pp. 1093-1100 
520 3 |a The electronic spectroscopy of cold protonated indole was investigated experimentally and theoretically. Two isomers were observed by experiment: The first isomer corresponds to the lowest-energy isomer in the calculations, absorbing at ∼350 nm and protonated on the C3 atom of the pyrrole ring. According to our calculations, the absorptions of the other isomers protonated on carbon atoms (C2, C4, C5, C 6, and C7) are in the visible region. Indeed, the absorption of the second observed isomer starts at 488 nm and was assigned to protonation on the C2 carbon of the pyrrole ring. Because good agreement was obtained between the calculated and experimental transitions for the observed isomers, reasonable ab initio transition energies can also be expected for the higher-energy isomers protonated on other carbon atoms, which should also absorb in the visible region. Protonation on the nitrogen atom leads to a transition that is blue-shifted with respect to that of the most stable isomer. © 2013 American Chemical Society.  |l eng 
593 |a CLUPS (Centre Laser de l'Université Paris-Sud/LUMAT FR 2764), Université Paris-Sud, 91405 Orsay Cedex, France 
593 |a Institut des Sciences Moléculaires d'Orsay (ISMO, UMR 8214 CNRS), Université Paris-Sud, 91405 Orsay Cedex, France 
593 |a Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syrian Arab Republic 
593 |a PIIM, Aix-Marseille Université, UMR-CNRS 7345, Avenue Escadrille Normandie-Niémen, 13397 Marseille cedex 20, France 
593 |a Laboratoire de Physique des Lasers, Université Paris 13, CNRS, 93430 Villetaneuse, France 
593 |a INQUIMAE-FCEN, UBA, Ciudad Universitaria, 3er piso, 1428 Buenos Aires, Argentina 
690 1 0 |a A TRANSITIONS 
690 1 0 |a ELECTRONIC SPECTROSCOPY 
690 1 0 |a ELECTRONIC SPECTRUM 
690 1 0 |a LOWEST-ENERGY ISOMERS 
690 1 0 |a NITROGEN ATOM 
690 1 0 |a STABLE ISOMERS 
690 1 0 |a TRANSITION ENERGY 
690 1 0 |a VISIBLE REGION 
690 1 0 |a AROMATIC COMPOUNDS 
690 1 0 |a ATOMS 
690 1 0 |a CALCULATIONS 
690 1 0 |a CHROMOPHORES 
690 1 0 |a POLYCYCLIC AROMATIC HYDROCARBONS 
690 1 0 |a PROTONATION 
690 1 0 |a ISOMERS 
690 1 0 |a INDOLE DERIVATIVE 
690 1 0 |a PROTON 
690 1 0 |a ARTICLE 
690 1 0 |a CHEMISTRY 
690 1 0 |a GAS 
690 1 0 |a QUANTUM THEORY 
690 1 0 |a ULTRAVIOLET SPECTROPHOTOMETRY 
690 1 0 |a PROTONS 
690 1 0 |a QUANTUM THEORY 
690 1 0 |a SPECTROPHOTOMETRY, ULTRAVIOLET 
650 1 7 |2 spines  |a CARBON 
650 1 7 |2 spines  |a GASES 
650 1 7 |2 spines  |a INDOLES 
700 1 |a Bert, J. 
700 1 |a Broquier, M. 
700 1 |a Dedonder, C. 
700 1 |a Feraud, G. 
700 1 |a Grégoire, G. 
700 1 |a Soorkia, S. 
700 1 |a Marceca, E. 
700 1 |a Jouvet, C. 
773 0 |d 2013  |g v. 117  |h pp. 4420-4427  |k n. 21  |p J Phys Chem A  |x 10895639  |t Journal of Physical Chemistry A 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84878347996&doi=10.1021%2fjp402298y&partnerID=40&md5=39d084ab4afb692b1aba1e39860f13f9  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/jp402298y  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10895639_v117_n21_p4420_Alata  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10895639_v117_n21_p4420_Alata  |y Registro en la Biblioteca Digital 
961 |a paper_10895639_v117_n21_p4420_Alata  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 72499