Modulation of chromatin modifying factors' gene expression in embryonic and induced pluripotent stem cells
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are a promising source of cells for regenerative medicine because of their potential of self renew and differentiation. Multiple evidences highlight the relationship of chromatin remodeling with stem cell properties, differentiat...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , , , , , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2011
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are a promising source of cells for regenerative medicine because of their potential of self renew and differentiation. Multiple evidences highlight the relationship of chromatin remodeling with stem cell properties, differentiation programs and reprogramming for iPSC obtention.With the purpose of finding chromatin modifying factors relevant to these processes, and based on ChIP on chip studies, we selected several genes that could be modulated by Oct4, Sox2 and Nanog, critical transcription factors in stem cells, and studied their expression profile along the differentiation in mouse and human ESCs, and in mouse iPSCs. In this work, we analyzed the expression of Gcn5l2, GTF3C3, TAF15, ATF7IP, Myst2, HDAC2, HDAC3, HDAC5, HDAC10, SUV39H2, Jarid2, and Bmi-1. We found some genes from different functional groups that were highly modulated, suggesting that they could be relevant both in the undifferentiated state and during differentiation. These findings could contribute to the comprehension of molecular mechanisms involved in pluripotency, early differentiation and reprogramming. We believe that a deeper knowledge of the epigenetic regulation of ESC will allow improving somatic cell reprogramming for iPSC obtention and differentiation protocols optimization. © 2011 Elsevier Inc. |
|---|---|
| Bibliografía: | Orkin, S.H., Chipping away at the embryonic stem cell network (2005) Cell, 122, pp. 828-830 Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S., Induction of pluripotent stem cells from adult human fibroblasts by defined factors (2007) Cell, 131, pp. 861-872 Takahashi, K., Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors (2006) Cell, 126, pp. 663-676 Yamanaka, S., A fresh look at iPS cells (2009) Cell, 137, pp. 13-17 de la Serna, I.L., Ohkawa, Y., Imbalzano, A.N., Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers (2006) Nat. Rev. Genet., 7, pp. 461-473 Surani, M.A., Hayashi, K., Hajkova, P., Genetic and epigenetic regulators of pluripotency (2007) Cell, 128, pp. 747-762 Kim, J., Chu, J., Shen, X., Wang, J., Orkin, S.H., An extended transcriptional network for pluripotency of embryonic stem cells (2008) Cell, 132, pp. 1049-1061 Losino, N., Luzzani, C., Solari, C., Boffi, J., Tisserand, M.L., Sevlever, G., Baranao, L., Guberman, A., Maintenance of murine embryonic stem cells' self-renewal and pluripotency with increase in proliferation rate by a bovine granulosa cell line-conditioned medium (2011) Stem Cells Dev. Scassa, M.E., de Giusti, C.J., Questa, M., Pretre, G., Richardson, G.A., Bluguermann, C., Romorini, L., Gomez, R.M., Human embryonic stem cells and derived contractile embryoid bodies are susceptible to Coxsakievirus B infection and respond to interferon Ibeta treatment (2011) Stem Cell Res., 6, pp. 13-22 Sommer, C.A., Stadtfeld, M., Murphy, G.J., Hochedlinger, K., Kotton, D.N., Mostoslavsky, G., Induced pluripotent stem cell generation using a single lentiviral stem cell cassette (2009) Stem Cells, 27, pp. 543-549 Solari, C., Losino, N., Luzzani, C., Waisman, A., Bluguermann, C., Questa, M., Sevlever, G., Guberman, A., Induced pluripotent stem cells' self-renewal pluripotency is maintained by a bovine granulosa cell line-conditioned medium (2011) Biochem. Biophys. Res. Commun., 410, pp. 252-257 Meissner, A., Epigenetic modifications in pluripotent and differentiated cells (2011) Nat. Biotechnol., 28, pp. 1079-1088 Mattout, A., Meshorer, E., Chromatin plasticity and genome organization in pluripotent embryonic stem cells (2010) Curr. Opin. Cell Biol., 22, pp. 334-341 Liang, J., Wan, M., Zhang, Y., Gu, P., Xin, H., Jung, S.Y., Qin, J., Songyang, Z., Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells (2008) Nat. Cell Biol., 10, pp. 731-739 Ho, L., Ronan, J.L., Wu, J., Staahl, B.T., Chen, L., Kuo, A., Lessard, J., Crabtree, G.R., An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 5181-5186 Ura, H., Usuda, M., Kinoshita, K., Sun, C., Mori, K., Akagi, T., Matsuda, T., Yokota, T., STAT3 and Oct-3/4 control histone modification through induction of Eed in embryonic stem cells (2008) J. Biol. Chem., 283, pp. 9713-9723 Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W., Steine, E.J., Hanna, J., Jaenisch, R., Histone H3K27ac separates active from poised enhancers and predicts developmental state (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 21931-21936 Krejci, J., Uhlirova, R., Galiova, G., Kozubek, S., Smigova, J., Bartova, E., Genome-wide reduction in H3K9 acetylation during human embryonic stem cell differentiation (2009) J. Cell Physiol., 219, pp. 677-687 Fazzio, T.G., Panning, B., Control of embryonic stem cell identity by nucleosome remodeling enzymes (2010) Curr. Opin. Genet. Dev., 20, pp. 500-504 Zhang, Z., Jones, A., Sun, C.W., Li, C., Chang, C.W., Joo, H.Y., Dai, Q., Wang, H., PRC2 Complexes with JARID2 (2010) and esPRC2p48 in ES cells to modulate ES Cell pluripotency and somatic cell reprogramming Stem Cells. Pasini, D., Cloos, P.A., Walfridsson, J., Olsson, L., Bukowski, J.P., Johansen, J.V., Bak, M., Helin, K., JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells (2010) Nature, 464, pp. 306-310 Bilodeau, S., Kagey, M.H., Frampton, G.M., Rahl, P.B., Young, R.A., SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state (2009) Genes Dev., 23, pp. 2484-2489 Martens, J.H., O'Sullivan, R.J., Braunschweig, U., Opravil, S., Radolf, M., Steinlein, P., Jenuwein, T., The profile of repeat-associated histone lysine methylation states in the mouse epigenome (2005) EMBO J., 24, pp. 800-812 Ding, X., Lin, Q., Ensenat-Waser, R., Rose-John, S., Zenke, M., Polycomb group protein Bmi1 promotes hematopoietic cell development from ES cells (2011) Stem Cells Dev. Oguro, H., Iwama, A., Morita, Y., Kamijo, T., van Lohuizen, M., Nakauchi, H., Differential impact of Ink4a and Arf on hematopoietic stem cells and their bone marrow microenvironment in Bmi1-deficient mice (2006) J. Exp. Med., 203, pp. 2247-2253 Bruggeman, S.W., Valk-Lingbeek, M.E., van der Stoop, P.P., Jacobs, J.J., Kieboom, K., Tanger, E., Hulsman, D., van Lohuizen, M., Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice (2005) Genes Dev., 19, pp. 1438-1443 Jacobs, J.J., Kieboom, K., Marino, S., DePinho, R.A., van Lohuizen, M., The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus (1999) Nature, 397, pp. 164-168 van der Lugt, N.M., Domen, J., Linders, K., van Roon, M., Robanus-Maandag, E., te Riele, H., van der Valk, M., van Lohuizen, M., Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene (1994) Genes Dev., 8, pp. 757-769 Chagraoui, J., Hebert, J., Girard, S., Sauvageau, G., An anticlastogenic function for the Polycomb Group gene Bmi1 (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 5284-5289 Kueh, A.J., Dixon, M.P., Voss, A.K., Thomas, T., HBO1 is required for H3K14 acetylation and normal transcriptional activity during embryonic development (2011) Mol. Cell Biol., 31, pp. 845-860 Dolgin, E., Flaw in induced-stem-cell model, Nature, 470, 13; Dovey, O.M., Foster, C.T., Cowley, S.M., Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation, Proc. Natl. Acad. Sci. USA, 107, 8242-8247; Taplick, J., Kurtev, V., Kroboth, K., Posch, M., Lechner, T., Seiser, C., Homo-oligomerisation and nuclear localisation of mouse histone deacetylase 1 (2001) J. Mol. Biol., 308, pp. 27-38 |
| ISSN: | 0006291X |
| DOI: | 10.1016/j.bbrc.2011.06.070 |