Modulation of chromatin modifying factors' gene expression in embryonic and induced pluripotent stem cells

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are a promising source of cells for regenerative medicine because of their potential of self renew and differentiation. Multiple evidences highlight the relationship of chromatin remodeling with stem cell properties, differentiat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Luzzani, C.
Otros Autores: Solari, C., Losino, N., Ariel, W., Romorini, L., Bluguermann, C., Sevlever, G., Barañao, L., Miriuka, S., Guberman, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13617caa a22013937a 4500
001 PAPER-10450
003 AR-BaUEN
005 20230518204029.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-79960333291 
024 7 |2 cas  |a histone deacetylase, 9076-57-7; Chromatin; Transcription Factors 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BBRCA 
100 1 |a Luzzani, C. 
245 1 0 |a Modulation of chromatin modifying factors' gene expression in embryonic and induced pluripotent stem cells 
260 |c 2011 
270 1 0 |m Guberman, A.; Laboratorio de Regulación de la Expresión Génica en el Crecimiento, Supervivencia y Diferenciación Celular Dept. de Química Biológica, Ciudad Univ., Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, Pab. 2, 4to piso, QB-71 (C1428EGA), Buenos Aires, Argentina; email: algub@qb.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Orkin, S.H., Chipping away at the embryonic stem cell network (2005) Cell, 122, pp. 828-830 
504 |a Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S., Induction of pluripotent stem cells from adult human fibroblasts by defined factors (2007) Cell, 131, pp. 861-872 
504 |a Takahashi, K., Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors (2006) Cell, 126, pp. 663-676 
504 |a Yamanaka, S., A fresh look at iPS cells (2009) Cell, 137, pp. 13-17 
504 |a de la Serna, I.L., Ohkawa, Y., Imbalzano, A.N., Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers (2006) Nat. Rev. Genet., 7, pp. 461-473 
504 |a Surani, M.A., Hayashi, K., Hajkova, P., Genetic and epigenetic regulators of pluripotency (2007) Cell, 128, pp. 747-762 
504 |a Kim, J., Chu, J., Shen, X., Wang, J., Orkin, S.H., An extended transcriptional network for pluripotency of embryonic stem cells (2008) Cell, 132, pp. 1049-1061 
504 |a Losino, N., Luzzani, C., Solari, C., Boffi, J., Tisserand, M.L., Sevlever, G., Baranao, L., Guberman, A., Maintenance of murine embryonic stem cells' self-renewal and pluripotency with increase in proliferation rate by a bovine granulosa cell line-conditioned medium (2011) Stem Cells Dev. 
504 |a Scassa, M.E., de Giusti, C.J., Questa, M., Pretre, G., Richardson, G.A., Bluguermann, C., Romorini, L., Gomez, R.M., Human embryonic stem cells and derived contractile embryoid bodies are susceptible to Coxsakievirus B infection and respond to interferon Ibeta treatment (2011) Stem Cell Res., 6, pp. 13-22 
504 |a Sommer, C.A., Stadtfeld, M., Murphy, G.J., Hochedlinger, K., Kotton, D.N., Mostoslavsky, G., Induced pluripotent stem cell generation using a single lentiviral stem cell cassette (2009) Stem Cells, 27, pp. 543-549 
504 |a Solari, C., Losino, N., Luzzani, C., Waisman, A., Bluguermann, C., Questa, M., Sevlever, G., Guberman, A., Induced pluripotent stem cells' self-renewal pluripotency is maintained by a bovine granulosa cell line-conditioned medium (2011) Biochem. Biophys. Res. Commun., 410, pp. 252-257 
504 |a Meissner, A., Epigenetic modifications in pluripotent and differentiated cells (2011) Nat. Biotechnol., 28, pp. 1079-1088 
504 |a Mattout, A., Meshorer, E., Chromatin plasticity and genome organization in pluripotent embryonic stem cells (2010) Curr. Opin. Cell Biol., 22, pp. 334-341 
504 |a Liang, J., Wan, M., Zhang, Y., Gu, P., Xin, H., Jung, S.Y., Qin, J., Songyang, Z., Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells (2008) Nat. Cell Biol., 10, pp. 731-739 
504 |a Ho, L., Ronan, J.L., Wu, J., Staahl, B.T., Chen, L., Kuo, A., Lessard, J., Crabtree, G.R., An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 5181-5186 
504 |a Ura, H., Usuda, M., Kinoshita, K., Sun, C., Mori, K., Akagi, T., Matsuda, T., Yokota, T., STAT3 and Oct-3/4 control histone modification through induction of Eed in embryonic stem cells (2008) J. Biol. Chem., 283, pp. 9713-9723 
504 |a Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W., Steine, E.J., Hanna, J., Jaenisch, R., Histone H3K27ac separates active from poised enhancers and predicts developmental state (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 21931-21936 
504 |a Krejci, J., Uhlirova, R., Galiova, G., Kozubek, S., Smigova, J., Bartova, E., Genome-wide reduction in H3K9 acetylation during human embryonic stem cell differentiation (2009) J. Cell Physiol., 219, pp. 677-687 
504 |a Fazzio, T.G., Panning, B., Control of embryonic stem cell identity by nucleosome remodeling enzymes (2010) Curr. Opin. Genet. Dev., 20, pp. 500-504 
504 |a Zhang, Z., Jones, A., Sun, C.W., Li, C., Chang, C.W., Joo, H.Y., Dai, Q., Wang, H., PRC2 Complexes with JARID2 (2010) and esPRC2p48 in ES cells to modulate ES Cell pluripotency and somatic cell reprogramming Stem Cells. 
504 |a Pasini, D., Cloos, P.A., Walfridsson, J., Olsson, L., Bukowski, J.P., Johansen, J.V., Bak, M., Helin, K., JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells (2010) Nature, 464, pp. 306-310 
504 |a Bilodeau, S., Kagey, M.H., Frampton, G.M., Rahl, P.B., Young, R.A., SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state (2009) Genes Dev., 23, pp. 2484-2489 
504 |a Martens, J.H., O'Sullivan, R.J., Braunschweig, U., Opravil, S., Radolf, M., Steinlein, P., Jenuwein, T., The profile of repeat-associated histone lysine methylation states in the mouse epigenome (2005) EMBO J., 24, pp. 800-812 
504 |a Ding, X., Lin, Q., Ensenat-Waser, R., Rose-John, S., Zenke, M., Polycomb group protein Bmi1 promotes hematopoietic cell development from ES cells (2011) Stem Cells Dev. 
504 |a Oguro, H., Iwama, A., Morita, Y., Kamijo, T., van Lohuizen, M., Nakauchi, H., Differential impact of Ink4a and Arf on hematopoietic stem cells and their bone marrow microenvironment in Bmi1-deficient mice (2006) J. Exp. Med., 203, pp. 2247-2253 
504 |a Bruggeman, S.W., Valk-Lingbeek, M.E., van der Stoop, P.P., Jacobs, J.J., Kieboom, K., Tanger, E., Hulsman, D., van Lohuizen, M., Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice (2005) Genes Dev., 19, pp. 1438-1443 
504 |a Jacobs, J.J., Kieboom, K., Marino, S., DePinho, R.A., van Lohuizen, M., The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus (1999) Nature, 397, pp. 164-168 
504 |a van der Lugt, N.M., Domen, J., Linders, K., van Roon, M., Robanus-Maandag, E., te Riele, H., van der Valk, M., van Lohuizen, M., Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene (1994) Genes Dev., 8, pp. 757-769 
504 |a Chagraoui, J., Hebert, J., Girard, S., Sauvageau, G., An anticlastogenic function for the Polycomb Group gene Bmi1 (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 5284-5289 
504 |a Kueh, A.J., Dixon, M.P., Voss, A.K., Thomas, T., HBO1 is required for H3K14 acetylation and normal transcriptional activity during embryonic development (2011) Mol. Cell Biol., 31, pp. 845-860 
504 |a Dolgin, E., Flaw in induced-stem-cell model, Nature, 470, 13; Dovey, O.M., Foster, C.T., Cowley, S.M., Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation, Proc. Natl. Acad. Sci. USA, 107, 8242-8247; Taplick, J., Kurtev, V., Kroboth, K., Posch, M., Lechner, T., Seiser, C., Homo-oligomerisation and nuclear localisation of mouse histone deacetylase 1 (2001) J. Mol. Biol., 308, pp. 27-38 
520 3 |a Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are a promising source of cells for regenerative medicine because of their potential of self renew and differentiation. Multiple evidences highlight the relationship of chromatin remodeling with stem cell properties, differentiation programs and reprogramming for iPSC obtention.With the purpose of finding chromatin modifying factors relevant to these processes, and based on ChIP on chip studies, we selected several genes that could be modulated by Oct4, Sox2 and Nanog, critical transcription factors in stem cells, and studied their expression profile along the differentiation in mouse and human ESCs, and in mouse iPSCs. In this work, we analyzed the expression of Gcn5l2, GTF3C3, TAF15, ATF7IP, Myst2, HDAC2, HDAC3, HDAC5, HDAC10, SUV39H2, Jarid2, and Bmi-1. We found some genes from different functional groups that were highly modulated, suggesting that they could be relevant both in the undifferentiated state and during differentiation. These findings could contribute to the comprehension of molecular mechanisms involved in pluripotency, early differentiation and reprogramming. We believe that a deeper knowledge of the epigenetic regulation of ESC will allow improving somatic cell reprogramming for iPSC obtention and differentiation protocols optimization. © 2011 Elsevier Inc.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, X849 
536 |a Detalles de la financiación: National Science and Technology Development Agency 
536 |a Detalles de la financiación: National Council for Scientific Research 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PID 115-PAE 37075 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 112-200801-03003 
536 |a Detalles de la financiación: The authors wish to thank Estefania Rojas and Marcelo Schultz for teratoma processing. This work was supported by grants (to A.G.) from the University of Buenos Aires (X849), National Scientific and Technical Research Council (CONICET, PIP 112-200801-03003), National Agency for Science and Technology Promotion (ANPCyT, PID 115-PAE 37075) and by Biosidus S.A. C.L., C.S. and L.R. are fellows from CONICET, N.L. is supported by a fellowship grant from University of Buenos Aires and C.B. by a fellowship grant from ANPCyT. Appendix A 
593 |a Lab. de Regulacion de la Expresion Genica en el Crecimiento, Supervivencia y Diferenciacion Celular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina 
593 |a Laboratorio de Biología del Desarrollo Celular, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Argentina 
593 |a Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a CHROMATIN MODIFYING FACTORS 
690 1 0 |a DIFFERENTIATION 
690 1 0 |a EMBRYONIC STEM CELLS 
690 1 0 |a INDUCED PLURIPOTENT STEM CELLS 
690 1 0 |a BMI1 PROTEIN 
690 1 0 |a CELL PROTEIN 
690 1 0 |a HISTONE DEACETYLASE 
690 1 0 |a HISTONE DEACETYLASE 10 
690 1 0 |a HISTONE DEACETYLASE 2 
690 1 0 |a HISTONE DEACETYLASE 3 
690 1 0 |a HISTONE DEACETYLASE 5 
690 1 0 |a PROTEIN ATF7IP 
690 1 0 |a PROTEIN GCN512 
690 1 0 |a PROTEIN GTF3C3 
690 1 0 |a PROTEIN JARID2 
690 1 0 |a PROTEIN MYST2 
690 1 0 |a PROTEIN SUV39H2 
690 1 0 |a PROTEIN TAF15 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ARTICLE 
690 1 0 |a CELL DIFFERENTIATION 
690 1 0 |a CHROMATIN ASSEMBLY AND DISASSEMBLY 
690 1 0 |a EMBRYONIC STEM CELL 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN CELL 
690 1 0 |a MOUSE 
690 1 0 |a NONHUMAN 
690 1 0 |a PLURIPOTENT STEM CELL 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a ANIMALS 
690 1 0 |a CELL LINE 
690 1 0 |a CHROMATIN 
690 1 0 |a CHROMATIN IMMUNOPRECIPITATION 
690 1 0 |a EMBRYONIC STEM CELLS 
690 1 0 |a GENE EXPRESSION REGULATION 
690 1 0 |a HUMANS 
690 1 0 |a INDUCED PLURIPOTENT STEM CELLS 
690 1 0 |a MICE 
690 1 0 |a TRANSCRIPTION FACTORS 
700 1 |a Solari, C. 
700 1 |a Losino, N. 
700 1 |a Ariel, W. 
700 1 |a Romorini, L. 
700 1 |a Bluguermann, C. 
700 1 |a Sevlever, G. 
700 1 |a Barañao, L. 
700 1 |a Miriuka, S. 
700 1 |a Guberman, A. 
773 0 |d 2011  |g v. 410  |h pp. 816-822  |k n. 4  |p Biochem. Biophys. Res. Commun.  |x 0006291X  |w (AR-BaUEN)CENRE-905  |t Biochemical and Biophysical Research Communications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-79960333291&doi=10.1016%2fj.bbrc.2011.06.070&partnerID=40&md5=ec92183dfdad1286f82243a6ed38f757  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.bbrc.2011.06.070  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0006291X_v410_n4_p816_Luzzani  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0006291X_v410_n4_p816_Luzzani  |y Registro en la Biblioteca Digital 
961 |a paper_0006291X_v410_n4_p816_Luzzani  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 71403