Maintenance of murine embryonic stem cells' self-renewal and pluripotency with increase in proliferation rate by a bovine granulosa cell line-conditioned medium

Murine embryonic stem cells (mESCs) are pluripotent cells that can be propagated in an undifferentiated state in continuous culture on a feeder layer or without feeders in the presence of leukemia inhibitory factor (LIF). Although there has been a great advance since their establishment, ESC culture...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Losino, N.
Otros Autores: Luzzani, C., Solari, C., Boffi, J., Tisserand, M.L, Sevlever, G., Barañao, L., Guberman, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15393caa a22013937a 4500
001 PAPER-10412
003 AR-BaUEN
005 20230518204026.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-79959766180 
024 7 |2 cas  |a Biological Markers; Culture Media, Conditioned 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a SCDTA 
100 1 |a Losino, N. 
245 1 0 |a Maintenance of murine embryonic stem cells' self-renewal and pluripotency with increase in proliferation rate by a bovine granulosa cell line-conditioned medium 
260 |c 2011 
270 1 0 |m Guberman, A.; Lab. de Regulacion de la Expresion Genica en el Crecimiento Supervivencia y Diferenciacion Celular, Departamento de Química Biológica, Ciudad Universitaria, Intendente Guiraldes 2160, Pab. 2, 4to piso, QB-71, Buenos Aires C1428EGA, Argentina; email: algub@qb.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Evans, M.J., Kaufman, M.H., Establishment in culture of pluripotential cells from mouse embryos (1981) Nature, 292 (5819), pp. 154-156. , DOI 10.1038/292154a0 
504 |a Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells (1981) Proceedings of the National Academy of Sciences of the United States of America, 78 (12), pp. 7634-7638 
504 |a Ginis, I., Luo, Y., Miura, T., Thies, S., Brandenberger, R., Gerecht-Nir, S., Amit, M., Rao, M.S., Differences between human and mouse embryonic stem cells (2004) Developmental Biology, 269 (2), pp. 360-380. , DOI 10.1016/j.ydbio.2003.12.034, PII S0012160604000193 
504 |a Niwa, H., (2007) How is pluripotency determined and maintained? Development, 134, pp. 635-646 
504 |a Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., Smith, A., Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4 (1998) Cell, 95 (3), pp. 379-391. , DOI 10.1016/S0092-8674(00)81769-9 
504 |a Skinner, M.K., Regulation of primordial follicle assembly and development (2005) Human Reproduction Update, 11 (5), pp. 461-471. , DOI 10.1093/humupd/dmi020 
504 |a Buccione, R., Schroeder, A.C., Eppig, J.J., Minireview: Interactions between somatic cells and germ cells throughout mammalian oogenesis (1990) Biology of Reproduction, 43 (4), pp. 543-547 
504 |a Knight, P.G., Glister, C., Potential local regulatory functions of inhibins, activins and follistatin in the ovary (2001) Reproduction, 121 (4), pp. 503-512 
504 |a Bernath, V.A., Muro, A.F., Vitullo, A.D., Bley, M.A., Baranao, J.L., Kornblihtt, A.R., Cyclic AMP inhibits fibronectin gene expression in a newly developed granulosa cell line by a mechanism that suppresses cAMP-responsive elementdependent transcriptional activation (1990) J Biol Chem, 265, pp. 18219-18226 
504 |a Lerner, A.A., Salamone, D.F., Chiappe, M.E., Baranao, J.L., Comparative studies between freshly isolated and spontaneously immortalized bovine granulosa cells: Protein secretion, steroid metabolism, and responsiveness to growth factors (1995) J Cell Physiol, 164, pp. 395-403 
504 |a Colman-Lerner, A., Fischman, M.L., Lanuza, G.M., Bissell, D.M., Kornblihtt, A.R., Baranao, J.L., Evidence for a role of the alternatively spliced ED-I sequence of fibronectin during ovarian follicular development (1999) Endocrinology, 140 (6), pp. 2541-2548. , DOI 10.1210/en.140.6.2541 
504 |a Chomczynski, P., Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction (1987) Analytical Biochemistry, 162 (1), pp. 156-159. , DOI 10.1006/abio.1987.9999 
504 |a Niwa, H., Miyazaki, J.-I., Smith, A.G., Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells (2000) Nature Genetics, 24 (4), pp. 372-376. , DOI 10.1038/74199 
504 |a Takahashi, K., Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors (2006) Cell, 126 (4), pp. 663-676. , DOI 10.1016/j.cell.2006.07.024, PII S0092867406009767 
504 |a Shi, W., Wang, H., Pan, G., Geng, Y., Guo, Y., Pei, D., Regulation of the pluripotency marker Rex-1 by Nanog and Sox2 (2006) Journal of Biological Chemistry, 281 (33), pp. 23319-23325. , http://www.jbc.org/cgi/reprint/281/33/23319, DOI 10.1074/jbc.M601811200 
504 |a Boheler, K.R., Czyz, J., Tweedie, D., Yang, H.-T., Anisimov, S.V., Wobus, A.M., Differentiation of pluripotent embryonic stem cells into cardiomyocytes (2002) Circulation Research, 91 (3), pp. 189-201. , DOI 10.1161/01.RES.0000027865.61704.32 
504 |a Koike, M., Sakaki, S., Amano, Y., Kurosawa, H., Characterization of embryoid bodies of mouse embryonic stem cells formed under various culture conditions and estimation of differentiation status of such bodies (2007) Journal of Bioscience and Bioengineering, 104 (4), pp. 294-299. , DOI 10.1263/jbb.104.294, PII S1389172307701615 
504 |a Creemers, E.E., Sutherland, L.B., McAnally, J., Richardson, J.A., Olson, E.N., Myocardin is a direct transcriptional target of Mef2, Tead and Foxo proteins during cardiovascular development (2006) Development, 133 (21), pp. 4245-4256. , DOI 10.1242/dev.02610 
504 |a Alak, B.M., Coskun, S., Friedman, C.I., Kennard, E.A., Kim, M.H., Seifer, D.B., Activin A stimulates meiotic maturation of human oocytes and modulates granulosa cell steroidogenesis in vitro (1998) Fertility and Sterility, 70 (6), pp. 1126-1130. , DOI 10.1016/S0015-0282(98)00386-0, PII S0015028298003860 
504 |a Arici, A., Oral, E., Bahtiyar, O., Engin, O., Seli, E., Jones, E.E., Leukaemia inhibitory factor expression in human follicular fluid and ovarian cells (1997) Human Reproduction, 12 (6), pp. 1233-1239 
504 |a Fazzini, M., Vallejo, G., Colman-Lerner, A., Trigo, R., Campo, S., Baranao, J.L., Saragueta, P.E., Transforming growth factor beta1 regulates follistatin mRNA expression during in vitro bovine granulosa cell differentiation (2006) J Cell Physiol, 207, pp. 40-48 
504 |a Smith, A.G., Heath, J.K., Donaldson, D.D., Wong, G.G., Moreau, J., Stahl, M., Rogers, D., Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides (1988) Nature, 336 (6200), pp. 688-690. , DOI 10.1038/336688a0 
504 |a Williams, R.L., Hilton, D.J., Pease, S., Wilson, T.A., Stewart, C.L., Gearing, D.P., Wagner, E.F., Gough, N.M., Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells (1988) Nature, 336 (6200), pp. 684-687. , DOI 10.1038/336684a0 
504 |a Ying, Q.-L., Nichols, J., Chambers, I., Smith, A., BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3 (2003) Cell, 115 (3), pp. 281-292. , DOI 10.1016/S0092-8674(03)00847-X 
504 |a Ying, Q.-L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P., Smith, A., The ground state of embryonic stem cell self-renewal (2008) Nature, 453 (7194), pp. 519-523. , DOI 10.1038/nature06968, PII NATURE06968 
504 |a Hall, J., Guo, G., Wray, J., Eyres, I., Nichols, J., Grotewold, L., Morfopoulou, S., Smith, A., Oct4 and LIF/Stat3 additively induce Kruppel factors to sustain embryonic stem cell self-renewal (2009) Cell Stem Cell, 5, pp. 597-609 
504 |a Yasuda, H., Tanaka, S., Ohnishi, H., Mashima, H., Ogushi, N., Mine, T., Kojima, I., Activin A: Negative regulator of amylase secretion and cell proliferation in rat pancreatic acinar AR42J cells (1994) Am J Physiol, 267, pp. G220-G226 
504 |a Maeshima, A., Nojima, Y., Kojima, I., Activin A: An autocrine regulator of cell growth and differentiation in renal proximal tubular cells (2002) Kidney International, 62 (2), pp. 446-454. , DOI 10.1046/j.1523-1755.2002.00463.x 
504 |a Shi, Y., Massague, J., Mechanisms of TGF-β signaling from cell membrane to the nucleus (2003) Cell, 113 (6), pp. 685-700. , DOI 10.1016/S0092-8674(03)00432-X 
504 |a Lafontaine, L., Chaudhry, P., Lafleur, M.J., Van Themsche, C., Soares, M.J., Asselin, E., Transforming growth factorbeta regulates proliferation and invasion of rat placental cell lines (2010) Biol Reprod Oct, 6. , DOI:10.1095/biolreprod.110.086348 
504 |a Ogawa, K., Saito, A., Matsui, H., Suzuki, H., Ohtsuka, S., Shimosato, D., Morishita, Y., Miyazono, K., Activin-Nodal signaling is involved in propagation of mouse embryonic stem cells (2007) Journal of Cell Science, 120 (1), pp. 55-65. , DOI 10.1242/jcs.03296 
504 |a Watabe, T., Miyazono, K., Roles of TGF-beta family signaling in stem cell renewal and differentiation (2009) Cell Res, 19, pp. 103-115 
504 |a Austin, L., Burgess, A.W., Stimulation of myoblast proliferation in culture by leukaemia inhibitory factor and other cytokines (1991) J Neurol Sci, 101, pp. 193-197 
504 |a Kurek, J., Bower, J., Romanella, M., Austin, L., Leukaemia inhibitory factor treatment stimulates muscle regeneration in the mdx mouse (1996) Neuroscience Letters, 212 (3), pp. 167-170. , DOI 10.1016/0304-3940(96)12802-0 
504 |a Kamohara, H., Sakamoto, K., Ishiko, T., Masuda, Y., Abe, T., Ogawa, M., Leukemia inhibitory factor induces apoptosis and proliferation of human carcinoma cells through different oncogene pathways (1997) International Journal of Cancer, 72 (4), pp. 687-695. , DOI 10.1002/(SICI)1097-0215(19970807)72:4<687::AID-IJC22>3.0.CO;2-7 
504 |a Zandstra, P.W., Le, H.-V., Daley, G.Q., Griffith, L.G., Lauffenburger, D.A., Leukemia inhibitory factor (LIF) concentration modulates embryonic stem cell self-renewal and differentiation independently of proliferation (2000) Biotechnology and Bioengineering, 69 (6), pp. 607-617 
504 |a Viswanathan, S., Benatar, T., Rose-John, S., Lauffenburger, D.A., Zandstra, P.W., Ligand/receptor signaling threshold (LIST) model accounts for gp130-mediated embryonic stem cell self-renewal responses to LIF and HIL-6 (2002) Stem Cells, 20 (2), pp. 119-138 
504 |a Kim, Y.H., Ryu, J.M., Lee, Y.J., Han, H.J., Fibronectin synthesis by high glucose level mediated proliferation of mouse embryonic stem cells: Involvement of ANG II and TGF-beta1 J Cell Physiol, 223, pp. 397-407 
504 |a Vallier, L., Alexander, M., Pedersen, R.A., Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells (2005) Journal of Cell Science, 118 (19), pp. 4495-4509. , DOI 10.1242/jcs.02553 
520 3 |a Murine embryonic stem cells (mESCs) are pluripotent cells that can be propagated in an undifferentiated state in continuous culture on a feeder layer or without feeders in the presence of leukemia inhibitory factor (LIF). Although there has been a great advance since their establishment, ESC culture is still complex and expensive. Therefore, finding culture conditions that maintain the self-renewal of ESCs, preventing their differentiation and promoting their proliferation, is still an area of great interest. In this work, we studied the effects of the conditioned medium from a bovine granulosa cell line (BGC-CM) on the maintenance of self-renewal and pluripotency of mESCs. We found that this medium is able to maintain mESCs' self-renewal while preserving its critical properties without LIF addition. mESCs cultured in BGC-CM expressed the stem cell markers Oct4, Sox2, Nanog, SSEA-1, Klf4, Rex1, and ECAT1. Moreover, mESCs cultured in BGC-CM gave rise to embryoid bodies and teratomas that differentiated effectively to diverse cell populations from endoderm, mesoderm, and ectoderm. Further, we found that mESCs cultured in BGC-CM have an increased proliferation rate compared with cells grown in the mESC standard culture medium supplemented with LIF. These findings may provide a powerful tool to culture mESCs for long periods of time with high proliferation rate while preserving its basic characteristics, contributing to the application of these cells to assess potential tissue engineering and cellular therapy applications. © Copyright 2011, Mary Ann Liebert, Inc.  |l eng 
593 |a Lab. de Regulacion de la Expresion Genica en el Crecimiento Supervivencia y Diferenciacion Celular, Departamento de Química Biológica, Ciudad Universitaria, Intendente Guiraldes 2160, Pab. 2, 4to piso, QB-71, Buenos Aires C1428EGA, Argentina 
593 |a Laboratorio de Biología del Desarrollo Celular, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 
593 |a Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET, Buenos Aires, Argentina 
690 1 0 |a KRUPPEL LIKE FACTOR 4 
690 1 0 |a OCTAMER TRANSCRIPTION FACTOR 4 
690 1 0 |a REX PROTEIN 
690 1 0 |a STAGE SPECIFIC EMBRYO ANTIGEN 1 
690 1 0 |a TRANSCRIPTION FACTOR NANOG 
690 1 0 |a TRANSCRIPTION FACTOR SOX2 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ARTICLE 
690 1 0 |a CELL CULTURE 
690 1 0 |a CELL DIFFERENTIATION 
690 1 0 |a CELL GROWTH 
690 1 0 |a CELL POPULATION 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a CELL RENEWAL 
690 1 0 |a COW 
690 1 0 |a CULTURE MEDIUM 
690 1 0 |a ECTODERM 
690 1 0 |a EMBRYOID BODY 
690 1 0 |a EMBRYONIC STEM CELL 
690 1 0 |a ENDODERM 
690 1 0 |a GRANULOSA CELL 
690 1 0 |a MESODERM 
690 1 0 |a NONHUMAN 
690 1 0 |a PLURIPOTENT STEM CELL 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a TERATOMA 
690 1 0 |a ANIMALS 
690 1 0 |a BIOLOGICAL MARKERS 
690 1 0 |a CATTLE 
690 1 0 |a CELL CULTURE TECHNIQUES 
690 1 0 |a CELL DIFFERENTIATION 
690 1 0 |a CELL LINE 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a CULTURE MEDIA, CONDITIONED 
690 1 0 |a EMBRYONIC STEM CELLS 
690 1 0 |a FEMALE 
690 1 0 |a GRANULOSA CELLS 
690 1 0 |a MICE 
690 1 0 |a PLURIPOTENT STEM CELLS 
690 1 0 |a BOVINAE 
690 1 0 |a MURINAE 
700 1 |a Luzzani, C. 
700 1 |a Solari, C. 
700 1 |a Boffi, J. 
700 1 |a Tisserand, M.L. 
700 1 |a Sevlever, G. 
700 1 |a Barañao, L. 
700 1 |a Guberman, A. 
773 0 |d 2011  |g v. 20  |h pp. 1439-1449  |k n. 8  |p Stem Cells Dev.  |x 15473287  |t Stem Cells and Development 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-79959766180&doi=10.1089%2fscd.2010.0336&partnerID=40&md5=20eaf7728fe069978b67c33c57050d9d  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1089/scd.2010.0336  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15473287_v20_n8_p1439_Losino  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15473287_v20_n8_p1439_Losino  |y Registro en la Biblioteca Digital 
961 |a paper_15473287_v20_n8_p1439_Losino  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 71365