Maintenance of murine embryonic stem cells' self-renewal and pluripotency with increase in proliferation rate by a bovine granulosa cell line-conditioned medium

Murine embryonic stem cells (mESCs) are pluripotent cells that can be propagated in an undifferentiated state in continuous culture on a feeder layer or without feeders in the presence of leukemia inhibitory factor (LIF). Although there has been a great advance since their establishment, ESC culture...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Losino, N.
Otros Autores: Luzzani, C., Solari, C., Boffi, J., Tisserand, M.L, Sevlever, G., Barañao, L., Guberman, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Murine embryonic stem cells (mESCs) are pluripotent cells that can be propagated in an undifferentiated state in continuous culture on a feeder layer or without feeders in the presence of leukemia inhibitory factor (LIF). Although there has been a great advance since their establishment, ESC culture is still complex and expensive. Therefore, finding culture conditions that maintain the self-renewal of ESCs, preventing their differentiation and promoting their proliferation, is still an area of great interest. In this work, we studied the effects of the conditioned medium from a bovine granulosa cell line (BGC-CM) on the maintenance of self-renewal and pluripotency of mESCs. We found that this medium is able to maintain mESCs' self-renewal while preserving its critical properties without LIF addition. mESCs cultured in BGC-CM expressed the stem cell markers Oct4, Sox2, Nanog, SSEA-1, Klf4, Rex1, and ECAT1. Moreover, mESCs cultured in BGC-CM gave rise to embryoid bodies and teratomas that differentiated effectively to diverse cell populations from endoderm, mesoderm, and ectoderm. Further, we found that mESCs cultured in BGC-CM have an increased proliferation rate compared with cells grown in the mESC standard culture medium supplemented with LIF. These findings may provide a powerful tool to culture mESCs for long periods of time with high proliferation rate while preserving its basic characteristics, contributing to the application of these cells to assess potential tissue engineering and cellular therapy applications. © Copyright 2011, Mary Ann Liebert, Inc.
Bibliografía:Evans, M.J., Kaufman, M.H., Establishment in culture of pluripotential cells from mouse embryos (1981) Nature, 292 (5819), pp. 154-156. , DOI 10.1038/292154a0
Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells (1981) Proceedings of the National Academy of Sciences of the United States of America, 78 (12), pp. 7634-7638
Ginis, I., Luo, Y., Miura, T., Thies, S., Brandenberger, R., Gerecht-Nir, S., Amit, M., Rao, M.S., Differences between human and mouse embryonic stem cells (2004) Developmental Biology, 269 (2), pp. 360-380. , DOI 10.1016/j.ydbio.2003.12.034, PII S0012160604000193
Niwa, H., (2007) How is pluripotency determined and maintained? Development, 134, pp. 635-646
Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., Smith, A., Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4 (1998) Cell, 95 (3), pp. 379-391. , DOI 10.1016/S0092-8674(00)81769-9
Skinner, M.K., Regulation of primordial follicle assembly and development (2005) Human Reproduction Update, 11 (5), pp. 461-471. , DOI 10.1093/humupd/dmi020
Buccione, R., Schroeder, A.C., Eppig, J.J., Minireview: Interactions between somatic cells and germ cells throughout mammalian oogenesis (1990) Biology of Reproduction, 43 (4), pp. 543-547
Knight, P.G., Glister, C., Potential local regulatory functions of inhibins, activins and follistatin in the ovary (2001) Reproduction, 121 (4), pp. 503-512
Bernath, V.A., Muro, A.F., Vitullo, A.D., Bley, M.A., Baranao, J.L., Kornblihtt, A.R., Cyclic AMP inhibits fibronectin gene expression in a newly developed granulosa cell line by a mechanism that suppresses cAMP-responsive elementdependent transcriptional activation (1990) J Biol Chem, 265, pp. 18219-18226
Lerner, A.A., Salamone, D.F., Chiappe, M.E., Baranao, J.L., Comparative studies between freshly isolated and spontaneously immortalized bovine granulosa cells: Protein secretion, steroid metabolism, and responsiveness to growth factors (1995) J Cell Physiol, 164, pp. 395-403
Colman-Lerner, A., Fischman, M.L., Lanuza, G.M., Bissell, D.M., Kornblihtt, A.R., Baranao, J.L., Evidence for a role of the alternatively spliced ED-I sequence of fibronectin during ovarian follicular development (1999) Endocrinology, 140 (6), pp. 2541-2548. , DOI 10.1210/en.140.6.2541
Chomczynski, P., Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction (1987) Analytical Biochemistry, 162 (1), pp. 156-159. , DOI 10.1006/abio.1987.9999
Niwa, H., Miyazaki, J.-I., Smith, A.G., Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells (2000) Nature Genetics, 24 (4), pp. 372-376. , DOI 10.1038/74199
Takahashi, K., Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors (2006) Cell, 126 (4), pp. 663-676. , DOI 10.1016/j.cell.2006.07.024, PII S0092867406009767
Shi, W., Wang, H., Pan, G., Geng, Y., Guo, Y., Pei, D., Regulation of the pluripotency marker Rex-1 by Nanog and Sox2 (2006) Journal of Biological Chemistry, 281 (33), pp. 23319-23325. , http://www.jbc.org/cgi/reprint/281/33/23319, DOI 10.1074/jbc.M601811200
Boheler, K.R., Czyz, J., Tweedie, D., Yang, H.-T., Anisimov, S.V., Wobus, A.M., Differentiation of pluripotent embryonic stem cells into cardiomyocytes (2002) Circulation Research, 91 (3), pp. 189-201. , DOI 10.1161/01.RES.0000027865.61704.32
Koike, M., Sakaki, S., Amano, Y., Kurosawa, H., Characterization of embryoid bodies of mouse embryonic stem cells formed under various culture conditions and estimation of differentiation status of such bodies (2007) Journal of Bioscience and Bioengineering, 104 (4), pp. 294-299. , DOI 10.1263/jbb.104.294, PII S1389172307701615
Creemers, E.E., Sutherland, L.B., McAnally, J., Richardson, J.A., Olson, E.N., Myocardin is a direct transcriptional target of Mef2, Tead and Foxo proteins during cardiovascular development (2006) Development, 133 (21), pp. 4245-4256. , DOI 10.1242/dev.02610
Alak, B.M., Coskun, S., Friedman, C.I., Kennard, E.A., Kim, M.H., Seifer, D.B., Activin A stimulates meiotic maturation of human oocytes and modulates granulosa cell steroidogenesis in vitro (1998) Fertility and Sterility, 70 (6), pp. 1126-1130. , DOI 10.1016/S0015-0282(98)00386-0, PII S0015028298003860
Arici, A., Oral, E., Bahtiyar, O., Engin, O., Seli, E., Jones, E.E., Leukaemia inhibitory factor expression in human follicular fluid and ovarian cells (1997) Human Reproduction, 12 (6), pp. 1233-1239
Fazzini, M., Vallejo, G., Colman-Lerner, A., Trigo, R., Campo, S., Baranao, J.L., Saragueta, P.E., Transforming growth factor beta1 regulates follistatin mRNA expression during in vitro bovine granulosa cell differentiation (2006) J Cell Physiol, 207, pp. 40-48
Smith, A.G., Heath, J.K., Donaldson, D.D., Wong, G.G., Moreau, J., Stahl, M., Rogers, D., Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides (1988) Nature, 336 (6200), pp. 688-690. , DOI 10.1038/336688a0
Williams, R.L., Hilton, D.J., Pease, S., Wilson, T.A., Stewart, C.L., Gearing, D.P., Wagner, E.F., Gough, N.M., Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells (1988) Nature, 336 (6200), pp. 684-687. , DOI 10.1038/336684a0
Ying, Q.-L., Nichols, J., Chambers, I., Smith, A., BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3 (2003) Cell, 115 (3), pp. 281-292. , DOI 10.1016/S0092-8674(03)00847-X
Ying, Q.-L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P., Smith, A., The ground state of embryonic stem cell self-renewal (2008) Nature, 453 (7194), pp. 519-523. , DOI 10.1038/nature06968, PII NATURE06968
Hall, J., Guo, G., Wray, J., Eyres, I., Nichols, J., Grotewold, L., Morfopoulou, S., Smith, A., Oct4 and LIF/Stat3 additively induce Kruppel factors to sustain embryonic stem cell self-renewal (2009) Cell Stem Cell, 5, pp. 597-609
Yasuda, H., Tanaka, S., Ohnishi, H., Mashima, H., Ogushi, N., Mine, T., Kojima, I., Activin A: Negative regulator of amylase secretion and cell proliferation in rat pancreatic acinar AR42J cells (1994) Am J Physiol, 267, pp. G220-G226
Maeshima, A., Nojima, Y., Kojima, I., Activin A: An autocrine regulator of cell growth and differentiation in renal proximal tubular cells (2002) Kidney International, 62 (2), pp. 446-454. , DOI 10.1046/j.1523-1755.2002.00463.x
Shi, Y., Massague, J., Mechanisms of TGF-β signaling from cell membrane to the nucleus (2003) Cell, 113 (6), pp. 685-700. , DOI 10.1016/S0092-8674(03)00432-X
Lafontaine, L., Chaudhry, P., Lafleur, M.J., Van Themsche, C., Soares, M.J., Asselin, E., Transforming growth factorbeta regulates proliferation and invasion of rat placental cell lines (2010) Biol Reprod Oct, 6. , DOI:10.1095/biolreprod.110.086348
Ogawa, K., Saito, A., Matsui, H., Suzuki, H., Ohtsuka, S., Shimosato, D., Morishita, Y., Miyazono, K., Activin-Nodal signaling is involved in propagation of mouse embryonic stem cells (2007) Journal of Cell Science, 120 (1), pp. 55-65. , DOI 10.1242/jcs.03296
Watabe, T., Miyazono, K., Roles of TGF-beta family signaling in stem cell renewal and differentiation (2009) Cell Res, 19, pp. 103-115
Austin, L., Burgess, A.W., Stimulation of myoblast proliferation in culture by leukaemia inhibitory factor and other cytokines (1991) J Neurol Sci, 101, pp. 193-197
Kurek, J., Bower, J., Romanella, M., Austin, L., Leukaemia inhibitory factor treatment stimulates muscle regeneration in the mdx mouse (1996) Neuroscience Letters, 212 (3), pp. 167-170. , DOI 10.1016/0304-3940(96)12802-0
Kamohara, H., Sakamoto, K., Ishiko, T., Masuda, Y., Abe, T., Ogawa, M., Leukemia inhibitory factor induces apoptosis and proliferation of human carcinoma cells through different oncogene pathways (1997) International Journal of Cancer, 72 (4), pp. 687-695. , DOI 10.1002/(SICI)1097-0215(19970807)72:4<687::AID-IJC22>3.0.CO;2-7
Zandstra, P.W., Le, H.-V., Daley, G.Q., Griffith, L.G., Lauffenburger, D.A., Leukemia inhibitory factor (LIF) concentration modulates embryonic stem cell self-renewal and differentiation independently of proliferation (2000) Biotechnology and Bioengineering, 69 (6), pp. 607-617
Viswanathan, S., Benatar, T., Rose-John, S., Lauffenburger, D.A., Zandstra, P.W., Ligand/receptor signaling threshold (LIST) model accounts for gp130-mediated embryonic stem cell self-renewal responses to LIF and HIL-6 (2002) Stem Cells, 20 (2), pp. 119-138
Kim, Y.H., Ryu, J.M., Lee, Y.J., Han, H.J., Fibronectin synthesis by high glucose level mediated proliferation of mouse embryonic stem cells: Involvement of ANG II and TGF-beta1 J Cell Physiol, 223, pp. 397-407
Vallier, L., Alexander, M., Pedersen, R.A., Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells (2005) Journal of Cell Science, 118 (19), pp. 4495-4509. , DOI 10.1242/jcs.02553
ISSN:15473287
DOI:10.1089/scd.2010.0336