Interpolation error estimates for edge elements on anisotropic meshes

The classical error analysis for Nédélec edge interpolation requires the so-called regularity assumption on the elements. However, in Nicaise (2001, SIAM J. Numer. Anal., 39, 784-816) optimal error estimates were obtained for the lowest order case under the weaker hypothesis of the maximum angle con...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lombardi, A.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05736caa a22005537a 4500
001 PAPER-10270
003 AR-BaUEN
005 20230518204017.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-80054708884 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Lombardi, A.L. 
245 1 0 |a Interpolation error estimates for edge elements on anisotropic meshes 
260 |c 2011 
270 1 0 |m Lombardi, A.L.; Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutierrez 1150, Los Polvorines, B1613GSX Provincia de Buenos Aires, Argentina; email: aldoc7@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Acosta, G., Apel, T., Duran, R.G., Lombardi, A.L., Anisotropic error estimates for an interpolant defined via moments (2008) Computing (Vienna/New York), 82 (1), pp. 1-9. , DOI 10.1007/s00607-008-0259-1 
504 |a Acosta, G., Apel, T., Durán, R.G., Lombardi, A.L., Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra (2011) Math. Comput., 80, pp. 147-163 
504 |a Acosta, G., Durán, R.G., The maximum angle condition for mixed and nonconforming elements: Application to the Stokes equations (2000) SIAM J. Numer. Anal., 37, pp. 18-36 
504 |a Adams, R.A., (1975) Sobolev Spaces, , New York: Academic Press 
504 |a Apel, T., (1999) Anisotropic Finite Elements: Local Estimates and Applications, , Stuttgart: Teubner 
504 |a Babuska, I., Aziz, A.K., On the angle condition in the finite element method (1976) SIAM J. Numer. Anal., 13, pp. 214-226 
504 |a Brenner, S., Scott, L.R., (1994) The Mathematical Analysis of Finite Element Methods, , New York: Springer 
504 |a Buffa, A., Costabel, M., Dauge, M., Algebraic convergence for anisotropic edge elements in polyhedral domains (2005) Numerische Mathematik, 101 (1), pp. 29-65. , DOI 10.1007/s00211-005-0607-4 
504 |a Caorsi, S., Fernandes, P., Raffetto, M., On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems (2000) SIAM Journal on Numerical Analysis, 38 (2), pp. 580-607. , PII S0036142999357506 
504 |a Ciarlet, P., (1978) The Finite Element Method for Elliptic Problems., , Amsterdam: North Holland 
504 |a Ciarlet, J.R.P., Zou, J., Fully discrete finite element approaches for time-dependent Maxwell's equations (1999) Numer. Math., 82, pp. 193-219 
504 |a Duppont, T., Scott, R., Polynomial approximation of functions in Sobolev spaces (1980) Math. Comput., 34, pp. 441-463 
504 |a Durán, R.G., Mixed finite element methods (1939) Mixed Finite Elements, Compatibility Conditions, and Applications, pp. 1-42. , (D. Boffi & L. Gastaldi eds). Lecture Notes in Mathematics Berlin: Springer 
504 |a Girault, V., Raviart, P.A., (1986) Finite Element Methods for Navier-Stokes Equations. Theory and Applications, , Berlin: Springer 
504 |a Jamet, P., Estimations d'erreur pour des éléments finis droits presque dégénérés (1976) RAIRO Anal. Numér, 10, pp. 46-71 
504 |a Krízek, M., On the maximum angle condition for linear tetrahedral elements (1992) SIAM J. Numer. Anal., 29, pp. 513-520 
504 |a Nédélec, J.C., Mixed finite elements in R3 (1980) Numer. Math., 35, pp. 315-341 
504 |a Nicaise, S., Edge elements on anisotropic meshes and approximation of the Maxwell equations (2001) SIAM J. Numer. Anal., 39, pp. 784-816 
504 |a Raviart, P.A., Thomas, J.-M., A mixed finite element method for second order elliptic problems (1977) Mathematical Aspects of the Finite Element Method, 606. , (I. Galligani & E. Magenes eds). Lectures Notes in Mathematics Berlin: Springer 
520 3 |a The classical error analysis for Nédélec edge interpolation requires the so-called regularity assumption on the elements. However, in Nicaise (2001, SIAM J. Numer. Anal., 39, 784-816) optimal error estimates were obtained for the lowest order case under the weaker hypothesis of the maximum angle condition. This assumption allows for anisotropic meshes that become useful, for example, for the approximation of solutions with edge singularities. In this paper we prove optimal error estimates for the edge interpolation of any order under the maximum angle condition. We also obtain sharp stability results for that interpolation on appropriate families of elements. mixed finite elements; edge elements; anisotropic finite elements. © 2010 The author.  |l eng 
593 |a Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutierrez 1150, Los Polvorines, B1613GSX Provincia de Buenos Aires, Argentina 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
690 1 0 |a ANISOTROPIC FINITE ELEMENTS 
690 1 0 |a EDGE ELEMENTS 
690 1 0 |a MIXED FINITE ELEMENTS 
773 0 |d 2011  |g v. 31  |h pp. 1683-1712  |k n. 4  |p IMA J. Numer. Anal.  |x 02724979  |w (AR-BaUEN)CENRE-1615  |t IMA Journal of Numerical Analysis 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-80054708884&doi=10.1093%2fimanum%2fdrq016&partnerID=40&md5=63edaaf68dfd831cd702bc04f399be6b  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1093/imanum/drq016  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02724979_v31_n4_p1683_Lombardi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02724979_v31_n4_p1683_Lombardi  |y Registro en la Biblioteca Digital 
961 |a paper_02724979_v31_n4_p1683_Lombardi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 71223