Photomodulation of macroscopic properties

We review macroscopic properties of materials that can be modulated by light through switching between the two stable states of a photochromic system. In special cases, the photochromic compound is the only component of the material, but in most cases it is either embedded or covalently linked to a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bossi, M.L
Otros Autores: Aramendía, P.F
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16591caa a22018737a 4500
001 PAPER-10185
003 AR-BaUEN
005 20230607131855.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-81355146545 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JPPCA 
100 1 |a Bossi, M.L. 
245 1 0 |a Photomodulation of macroscopic properties 
260 |c 2011 
270 1 0 |m Bossi, M.L.; INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires, Argentina; email: mariano@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Dürr, H., Bouas-Laurent, H., (1990) Photochromism. Molecules and Systems, , Elsevier, Amsterdam 
504 |a Crano, J.C., Guglielmetti, R.J., (1999) Organic Photochromic and Thermochromic Compounds, , Plenum Press, New York 
504 |a Braslavsky, S.E., (2007) Pure Appl. Chem., 79, p. 293 
504 |a Van der Horst, M.A., Hellingwerf, K.J., (2004) Acc. Chem. Res., 37, p. 13 
504 |a Ritter, E., Elgeti, M., Bartl, F.J., (2008) Photochem. Photobiol., 84, p. 911 
504 |a Sineshchekov, V.A., (2004) Photochem. Photobiol. Sci., 3, p. 596 
504 |a Photochromism. Molecules and switches. Thematic issue (2000) Chem. Rev., 100 (5) 
504 |a Seki, T., (2007) Bull. Chem. Soc. Jpn., 80, p. 2084 
504 |a Matharu, A.S., Jeeva, S., Ramanujam, P.S., (2007) Chem. Soc. Rev., 36, p. 1868 
504 |a Kato, T., Hirai, Y., Nakaso, S., Moriyama, M., (2007) Chem. Soc. Rev., 36, p. 1857 
504 |a Kulikovska, O., Goldenberg, L.M., Kulikovsky, L., Stumpe, J., (2008) Chem. Mater., 20, p. 3528 
504 |a Ikeda, T., (2003) J. Mater. Chem., 13, p. 2037 
504 |a Dvornikov, A.S., Liang, Y., Cruse, C.S., Rentzepis, P.M., (2004) J. Phys. Chem. B, 108, p. 8652 
504 |a Bispo, M., Guillon, D., Donnio, B., Finkelmann, H., (2008) Macromolecules, 41, p. 3098 
504 |a Yasuda, S., Nakamura, T., Matsumoto, M., Shigekawa, H., (2003) J. Am. Chem. Soc., 125, p. 16430 
504 |a Katsonis, N., Kudernac, T., Walko, M., van der Molen, S.J., van Wees, B.J., Feringa, B.L., (2006) Adv. Mater., 18, p. 1397 
504 |a Klessinger, M., Michl, J., (1995) Excited States and Photochemistry of Organic Molecules, , VCH, New York, Chapter 7 
504 |a Ikeda, T., Tsutsumi, O., (1995) Science, 268, p. 1873 
504 |a Frigoli, M., Mehl, G.H., (2004) Chem. Commun., p. 2040 
504 |a Frigoli, M., Mehl, G.H., (2003) ChemPhysChem, 4, p. 101 
504 |a Frigoli, M., Welch, C., Mehl, G.H., (2004) J. Am. Chem. Soc., 126, p. 15382 
504 |a Tong, X., Wang, G., Zhao, Y., (2006) J. Am. Chem. Soc., 128, p. 8746 
504 |a Bossi, M.L., Murgida, D.H., Aramendía, P.F., (2006) J. Phys. Chem. B., 110, p. 13804 
504 |a Ichimura, K., Suzuki, Y., Seki, T., Hosoki, A., Auki, K., (1988) Langmuir, 4, p. 1214 
504 |a Kawanishi, Y., Suzuki, Y., Sakuragi, M., Kamezaki, H., Ichimura, K., (1994) J. Photochem. Photobiol. A. Chem., 80, p. 433 
504 |a Seki, T., Nagano, S., (2008) Chem. Lett., 37, p. 484 
504 |a Ichimura, K., Fujiwara, T., Momose, M., Matsunaga, D., (2002) J. Mater. Chem., 12, p. 3380 
504 |a Furumi, S., Akiyama, H., Morino, S.Y., Ichimura, K., (1998) J. Mater. Chem., 8, p. 65 
504 |a Ichimura, K., Hayashi, Y., Goto, K., Ishizuki, N., (1993) Thin Solid Films, 235, p. 101 
504 |a Ichimura, K., (2000) Chem. Rev., 100, p. 1847 
504 |a Ichimura, K., Morino, S., (1998) Appl. Phys. Lett., 73, p. 921 
504 |a Tejedor, R.M., Oriol, L., Serrano, J.L., Sierra, T., (2008) J. Mater. Chem., 18, p. 2899 
504 |a Pijper, D., Feringa, B.L., (2008) Soft Matter, 4, p. 1349 
504 |a Hore, D.K., Natansohn, A.L., Rochon, P.L., (2003) J. Phys. Chem. B, 107, p. 2506 
504 |a Bossi, M., Rodríguez, J.B., Aramendía, P.F., (2006) J. Photochem. Photobiol. A: Chem., 179, p. 35 
504 |a Maly, K.E., Zhang, P., Wand, M.D., Buncel, E., Lemieux, R.P., (2004) J. Mater. Chem., 14, p. 2806 
504 |a Maly, K.E., Wand, M.D., Lemieux, R.P., (2002) J. Am. Chem. Soc., 124, p. 7898 
504 |a Mitsuoka, T., Sato, H., Yoshida, J., Yamagishi, A., Einaga, Y., (2006) Chem. Mater., 18, p. 3442 
504 |a Vlahakis, J.Z., Wand, M.D., Lemieux, R.P., (2003) J. Am. Chem. Soc., 125, p. 6862 
504 |a Sackmann, E., (1971) J. Am. Chem. Soc., 93, p. 7088 
504 |a Ruslim, C., Ichimura, K., (2000) J. Phys. Chem. B., 104, p. 6529 
504 |a Lee, H.-K., Doi, K., Harada, H., Tsutsumi, O., Kanazawa, A., Shiono, T., Ikeda, T., (2000) J. Phys. Chem. B, 104, p. 7023 
504 |a Yoshioka, T., Ogata, T., Nonaka, T., Moritsugu, M., Kim, S.N., Kurihara, S., (2005) Adv. Mater., 17, p. 1226 
504 |a Hrozhyk, U.A., Serak, S.V., Tabiryan, N.V., Bunning, T.J., (2007) Adv. Funct. Mater., 17, p. 1735 
504 |a Feringa, B., Wynberg, H., (1977) J. Am. Chem. Soc., 99, p. 602 
504 |a Feringa, B.L., Jager, W.F., De Lange, B., Meijer, E.W., (1991) J. Am. Chem. Soc., 113, p. 5468 
504 |a Lemieux, R.P., Schuster, G.B., (1993) J. Org. Chem., 58, p. 100 
504 |a Feringa, B.L., Huck, N.P.M., van Doren, H.A., (1995) J. Am. Chem. Soc., 117, p. 9929 
504 |a Ruslim, C., Ichimura, K., (2002) J. Mater. Chem., 12, p. 3377 
504 |a Saeva, F.D., Wysocki, J.J., (1971) J. Am. Chem. Soc., 93, p. 5928 
504 |a Hill, W., Mason, S., Peacock, R., (1977) J. Chem. Soc. Perkin II, p. 1262 
504 |a Dudley, R.J., Mason, S., Peacock, R., (1975) J. Chem. Soc. Farad. II, p. 997 
504 |a Simoncelli, S., Aramendía, P.F., Unpublished results; Yoshida, H., Lee, C.H., Miura, Y., Fujii, A., Ozaki, M., (2008) Thin Solid Films, 516, p. 2358 
504 |a Sasaki, T., Ikeda, T., (1995) J. Phys. Chem., 99, p. 13013 
504 |a Roberts, J.C., Kapernaum, N., Giesselmann, F., Wand, M.D., Lemieux, R.P., (2008) J. Mater. Chem., 18, p. 5301 
504 |a Zhang, P., Buncel, E., Lemieux, R.P., (2005) Adv. Mater., 17, p. 567 
504 |a Vlahakis, J.Z., Wand, M.D., Lemieux, R.P., (2004) Adv. Funct. Mater., 14, p. 637 
504 |a Lemieux, R.P., (2005) Soft Matter, 1, p. 348 
504 |a Eich, M., Wendorff, J.H., Reck, B., Ringsdorf, H., (1987) Macromol. Chem. Rapid Commun., 8, p. 59 
504 |a Rochon, P., Batalla, E., Natansohn, A., (1995) Appl. Phys. Lett., 66, p. 136 
504 |a Kim, D.Y., Tripathy, S.K., Li, L., Kumar, J., (1995) Appl. Phys. Lett., 66, p. 1166 
504 |a Viswanathan, N.K., Kim, D.Y., Bian, S., Williams, J., Liu, W., Li, L., Samuelson, L., Tripathy, S.K., (1999) J. Mater. Chem., 9, p. 1941 
504 |a Natansohn, A., Rochon, P., (2002) Chem. Rev., 102, p. 4139 
504 |a Kulikovska, O., Goldenberg, L.M., Stumpe, J., (2007) Chem. Mater., 19, p. 3343 
504 |a Katsonis, N., Lubomska, M., Pollard, M.M., Feringa, B.L., Rudolf, P., (2007) Prog. Surf. Sci., 82, p. 407 
504 |a Vlassiouk, I., Park, C.D., Vail, S.A., Gust, D., Smirnov, S., (2006) Nano Lett., 6, p. 1013 
504 |a Lygeraki, M.I., Tsiranidou, E., Anastasiadis, S.H., Fotakis, C., Pisignano, D., Cingolani, R., Athanassiou, A., (2008) Appl. Phys. A: Mater. Sci. Process., 91, p. 397 
504 |a Di Benedetto, F., Mele, E., Camposeo, A., Athanassiou, A., Cingolani, R., Pisignano, D., (2008) Adv. Mater., 20, p. 314 
504 |a Pecinovsky, C.S., Hatakeyama, E.S., Gin, D.L., (2008) Adv. Mater., 20, p. 174 
504 |a Jin, T., (2007) Mater. Lett., 61, p. 805 
504 |a Kungwatchakun, D., Irie, M., (1988) Makromol. Chem. Rapid Commun., 9, p. 243 
504 |a Desponds, A., Freitag, R., (2003) Langmuir, 19, p. 6261 
504 |a Akiyama, H., Tamaoki, N., (2007) Macromolecules, 40, p. 5129 
504 |a Akiyama, H., Tamaoki, N., (2004) J. Polym. Sci. Part A: Polym. Chem., 42, p. 5200 
504 |a Smets, G., (1975) J. Polym. Sci. A: Polym. Chem., 13, p. 2223 
504 |a Kumar, G.S., Neckers, D.C., (1989) Chem. Rev., 89, p. 1915 
504 |a Yu, Y., Ikeda, T., (2004) J. Photochem. Photobiol. C: Photochem. Rev., 5, p. 247 
504 |a Ikeda, T., Nakano, M., Yu, Y., Tsutsumi, O., Kanazawa, A., (2003) Adv. Mater., 15, p. 201 
504 |a Yu, Y., Nakano, M., Ikeda, T., (2003) Nature, 425, p. 145 
504 |a Li, M.-H., Keller, P., Li, B., Wang, X., Brunet, M., (2003) Adv. Mater., 15, p. 569 
504 |a Finkelmann, H., Nishikawa, E., Pereira, G.G., Warner, M., (2001) Phys. Rev. Lett., 87, p. 015501 
504 |a Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P., Shelley, M., (2004) Nat. Mater., 3, p. 307 
504 |a Yu, Y., Nakano, M., Ikeda, T., (2004) Pure Appl. Chem., 76, p. 1467 
504 |a van Oosten, C.L., Bastiaansen, C.W.M., Broer, D.J., (2009) Nat. Mater., 8, p. 677 
504 |a Yamada, M., Kondo, M., Mamiya, J.-I., Yu, Y., Kinoshita, M., Barrett, C.J., Ikeda, T., (2008) Angew. Chem. Int. Ed., 47, p. 4986 
504 |a Yu, Y.L., Maeda, T., Mamiya, J., Ikeda, T., (2007) Angew. Chem. Int. Ed., 46, p. 881 
504 |a Angelini, N., Corrias, B., Fissi, A., Pieroni, O., Lenci, F., (1998) Biophys. J., 74, p. 2601 
504 |a Adelmann, R., Mela, P., Gallyamov, M., Keul, H., Möller, M., (2009) J. Polym. Sci. Part A: Polym. Chem., 47, p. 1274 
504 |a Kronemeijer, A.J., Akkerman, H.B., Kudernac, T., van Wees, B.J., Feringa, B.L., Blom, P.W.M., de Boer, B., (2008) Adv. Mater., 20, p. 1467 
504 |a Zhang, Z., Liu, X.D., Li, Z.Y., Chen, Z.I., Zhao, F.Q., Zhang, F.I., Tung, C.H., (2008) Adv. Funct. Mater., 18, p. 302 
504 |a Levitus, M., Glasser, G., Neher, D., Aramendía, P.F., (1997) Chem. Phys. Lett., 277, p. 118 
504 |a Barrett, C.J., Natansohn, A.L., Rochon, P.L., (1996) J. Phys. Chem., 100, p. 8836 
504 |a Karp, E., Pecinovsky, C.S., McNevin, M.J., Gin, D.L., Schwartz, D.K., (2007) Langmuir, 23, p. 7923 
504 |a Feringa, B.L., (2007) J. Org. Chem., 72, p. 6635 
520 3 |a We review macroscopic properties of materials that can be modulated by light through switching between the two stable states of a photochromic system. In special cases, the photochromic compound is the only component of the material, but in most cases it is either embedded or covalently linked to a suitable host, which is normally a liquid crystalline phase, a glassy or a rubbery polymer, or an interface. We analyze examples that illustrate changes in refractive index, transmission of polarized light, reflectivity, light dispersion, polarization, charge transport capability, dielectrical properties, stable phase, microscopic surface relief in large areas, hydrophobicity of the surface, permeability, and even bulk mechanical deformations. The basis of such changes at a molecular level is associated with a difference in the shape, dipole moment, polarizability, or electronic features of the photochromic species, and their different interaction with the environment. In some cases, studies were performed at the single molecule level. Each effect is discussed stressing the favorable features of the particular photochromic compounds to induce the changes and its interaction with the environment that make it suitable for the appointed application. © 2011 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Major League Baseball 
536 |a Detalles de la financiación: Umweltbundesamt, EX006 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Facultad de Ciencias Físicas y Matemáticas 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 33973 
536 |a Detalles de la financiación: MLB and PFA are research staff from CONICET (Miembros de la carrera del investigador científico del Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina). This work was performed under support from UBA ( EX006 ) and ANPCyT ( PICT 33973 ). Mariano Bossi was born on 1974 in Buenos Aires, Argentina. He received his MS in Chemistry from the University of Buenos Aires (UBA) in 1998, and a PhD degree in Physical Chemistry from the same University in 2003. Early in his doctorate, he was accepted as a member of the non-profit science organization Gabbos. From 2004 to 2008 he was a post-Doc at the Max-Planck-Institute for Biophysical Chemistry, Department of NanoBiophotonics (Goettingen, Germany), and a Marie Curie Fellow, implementing bistable photochromic compounds into modern fluorescence nanoscopies. In 2008 he was appointed as a research staff of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) working at the Institute of Physical Chemistry of Materials, Environment and Energy (INQUIMAE). In 2009 he was appointed Professor at the School of Sciences of the University of Buenos Aires. From his return to Argentina, he founded the Photonic Nanoscopies Laboratory, an experimental research group at Inquimae-UBA. His current research interest is centered in the development of fluorescent switchable probes for superresolution microscopy. Pedro F. Aramendía was born in Buenos Aires, Argentina. He received his degree from the University of Buenos Aires (UBA), where he also made his PhD thesis in 1983 under the supervision of Prof. Hans Schumacher working on gas phase kinetics of fluorinated compounds. After a postdoctoral period in Mülheim Ruhr under the direction of Prof. Silvia Braslavsky, he returned to Argentina, where he was appointed as assistant professor in 1990 at the University of Buenos Aires. He was a visiting scientist in UNICAMP, Brazil, and in Research Institutions in Germany. In 1994 he received the Grammaticakis-Neumann Prize from the Swiss Chemical Society. At present he is full-time Professor of Physical Chemistry at the Facultad de Ciencias Exactas y Naturales, UBA, and research staff from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) working at the Institute of Physical Chemistry of Materials, Environment and Energy (INQUIMAE). His interests are photoisomerization reactions, fluorescence spectroscopy, single molecule spectroscopy, and photochemical probes. 
593 |a INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires, Argentina 
690 1 0 |a LIQUID CRYSTALS 
690 1 0 |a PHOTOCHROMISM 
690 1 0 |a PHOTOMODULATION 
690 1 0 |a PHOTOSWITCHING 
690 1 0 |a POLYMERS 
690 1 0 |a DIELECTRICAL PROPERTIES 
690 1 0 |a LIGHT DISPERSION 
690 1 0 |a LIQUID CRYSTALLINE PHASE 
690 1 0 |a MACROSCOPIC PROPERTIES 
690 1 0 |a MECHANICAL DEFORMATION 
690 1 0 |a MICROSCOPIC SURFACE 
690 1 0 |a MOLECULAR LEVELS 
690 1 0 |a PHOTO MODULATION 
690 1 0 |a PHOTOCHROMIC COMPOUND 
690 1 0 |a PHOTOCHROMIC SYSTEMS 
690 1 0 |a PHOTOSWITCHING 
690 1 0 |a POLARIZABILITIES 
690 1 0 |a RUBBERY POLYMERS 
690 1 0 |a SINGLE MOLECULE LEVEL 
690 1 0 |a STABLE PHASE 
690 1 0 |a STABLE STATE 
690 1 0 |a INTERFACES (MATERIALS) 
690 1 0 |a LIGHT TRANSMISSION 
690 1 0 |a LIQUID CRYSTALS 
690 1 0 |a MATERIALS PROPERTIES 
690 1 0 |a MECHANICAL PERMEABILITY 
690 1 0 |a POLARIZATION 
690 1 0 |a POLYMERS 
690 1 0 |a REFRACTIVE INDEX 
690 1 0 |a SURFACE PROPERTIES 
690 1 0 |a PHOTOCHROMISM 
700 1 |a Aramendía, P.F. 
773 0 |d 2011  |g v. 12  |h pp. 154-166  |k n. 3  |p J. Photochem. Photobiol. C Photochem. Rev.  |x 13895567  |w (AR-BaUEN)CENRE-1780  |t Journal of Photochemistry and Photobiology C: Photochemistry Reviews 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-81355146545&doi=10.1016%2fj.jphotochemrev.2011.09.002&partnerID=40&md5=52e001893e0ffe12dbbddbabfc1fb3a2  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jphotochemrev.2011.09.002  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_13895567_v12_n3_p154_Bossi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13895567_v12_n3_p154_Bossi  |y Registro en la Biblioteca Digital 
961 |a paper_13895567_v12_n3_p154_Bossi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 71138