building FCEN-UBA
institution Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
id FCEN-UBA--paperaa:paper_0022247X_v388_n2_p1013_GallardoGutierrez
author Gallardo-Gutiérrez, E.A.
Gorkin, P.
Suárez, D.
spellingShingle Gallardo-Gutiérrez, E.A.
Gorkin, P.
Suárez, D.
BLASCHKE PRODUCTS
EIGENFUNCTIONS OF COMPOSITION OPERATORS
INVARIANT SUBSPACES
Orbits of non-elliptic disc automorphisms on H p
Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H 2 generated by the limit points in the H 2 norm of the orbit of a thin Blaschke product B under composition operators C φ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the C φ-eigenfunctions in H p for 1≤p≤∞. © 2011 Elsevier Inc.
topic BLASCHKE PRODUCTS
EIGENFUNCTIONS OF COMPOSITION OPERATORS
INVARIANT SUBSPACES
topic_facet BLASCHKE PRODUCTS
EIGENFUNCTIONS OF COMPOSITION OPERATORS
INVARIANT SUBSPACES
title Orbits of non-elliptic disc automorphisms on H p
title_full Orbits of non-elliptic disc automorphisms on H p
title_fullStr Orbits of non-elliptic disc automorphisms on H p
title_full_unstemmed Orbits of non-elliptic disc automorphisms on H p
title_short Orbits of non-elliptic disc automorphisms on H p
contents Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H 2 generated by the limit points in the H 2 norm of the orbit of a thin Blaschke product B under composition operators C φ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the C φ-eigenfunctions in H p for 1≤p≤∞. © 2011 Elsevier Inc.
url http://hdl.handle.net/20.500.12110/paper_0022247X_v388_n2_p1013_GallardoGutierrez
format Artículo
genre Artículo
genre_facet Artículo
era 2012
era_facet 2012
publishDate 2012
_version_ 1670350811900674048
score 13,179736