A Generalization of the Laguerre-Pólya Class of Entire Functions

Main Author: Suárez, D.
Format: Artículo
Published: 1999
Subjects:
Online Access: http://hdl.handle.net/20.500.12110/paper_00219045_v101_n1_p37_Suarez
building FCEN-UBA
institution Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
id FCEN-UBA--paperaa:paper_00219045_v101_n1_p37_Suarez
author Suárez, D.
spellingShingle Suárez, D.
A Generalization of the Laguerre-Pólya Class of Entire Functions
Let Θ be a set of real numbers unbounded on both sides and let B be a finite set of positive integers. We characterize the entire functions that can be uniformly approximated on bounded sets by polynomials of the form ∏j∈Bpj(zj), where each pj(z) is a polynomial with zeros in Θ. © 1999 Academic Press.
title A Generalization of the Laguerre-Pólya Class of Entire Functions
title_full A Generalization of the Laguerre-Pólya Class of Entire Functions
title_fullStr A Generalization of the Laguerre-Pólya Class of Entire Functions
title_full_unstemmed A Generalization of the Laguerre-Pólya Class of Entire Functions
title_short A Generalization of the Laguerre-Pólya Class of Entire Functions
contents Let Θ be a set of real numbers unbounded on both sides and let B be a finite set of positive integers. We characterize the entire functions that can be uniformly approximated on bounded sets by polynomials of the form ∏j∈Bpj(zj), where each pj(z) is a polynomial with zeros in Θ. © 1999 Academic Press.
url http://hdl.handle.net/20.500.12110/paper_00219045_v101_n1_p37_Suarez
format Artículo
genre Artículo
genre_facet Artículo
era 1999
era_facet 1999
publishDate 1999
_version_ 1670350803354779648
score 13,179736